Climate reddening increases the chance of critical transitions

Climate change research often focuses on trends in the mean and variance. However, analyses of palaeoclimatic and contemporary dynamics reveal that climate memory — as measured for instance by temporal autocorrelation — may also change substantially over time. Here, we show that elevated temporal autocorrelation in climatic variables should be expected to increase the chance of critical transitions in climate-sensitive systems with tipping points. We demonstrate that this prediction is consistent with evidence from forests, coral reefs, poverty traps, violent conflict and ice sheet instability. In each example, the duration of anomalous dry or warm events elevates chances of invoking a critical transition. Understanding the effects of climate variability thus requires research not only on variance, but also on climate memory.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic representation of how the duration of a climate event may determine whether it invokes a transition to an alternative attractor.
Fig. 2: The relationship between the duration and size of a perturbation in the conditions for invoking a state shift.
Fig. 3: The simulated fate of biomass subject to a gradual slow increase of the harvest rate under a white noise versus a time-correlated stochastic forcing regime in a classical overexploitation model.
Fig. 4: The effect of temporal autocorrelation of a stochastic forcing regime on the likelihood of collapse of the biomass system.
Fig. 5: Combined effects of the autocorrelation and standard deviation of the fluctuations on the value of the driver at which the system shifts.

References

  1. 1.

    Scheffer, M. Critical Transitions in Nature and Society (Studies in Complexity, Princeton Univ. Press, 2009).

  2. 2.

    Groffman, P. M. et al. Ecological thresholds: the key to successful environmental management or an important concept with no practical application? Ecosystems 9, 1–13 (2006).

    Google Scholar 

  3. 3.

    May, R. M. Thesholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269, 471–477 (1977).

    Google Scholar 

  4. 4.

    Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

    CAS  Google Scholar 

  5. 5.

    van de Leemput, I. A., van Nes, E. H. & Scheffer, M. Resilience of alternative states in spatially extended ecosystems. PLoS ONE 10, e0116859 (2015).

    Google Scholar 

  6. 6.

    Carpenter, S. R., Ludwig, D. & Brock, W. A. Management of eutrophication for lakes subject to potentially irreversible change. Ecol. Appl. 9, 751–771 (1999).

    Google Scholar 

  7. 7.

    Trenberth, K. E. Some effects of finite sample size and persistence on meteorological statistics. part i: autocorrelations. Mon. Weather Rev. 112, 2359–2368 (1984).

    Google Scholar 

  8. 8.

    Hasselmann, K. Stochastic climate models Part I. Theory. Tellus 28, 473–485 (1976).

    Google Scholar 

  9. 9.

    Frankignoul, C. & Hasselmann, K. Stochastic climate models Part II: application to sea-surface temperature anomalies and thermocline variability. Tellus 29, 289–305 (1977).

    Google Scholar 

  10. 10.

    Schlesinger, M. E. & Ramankutty, N. An oscillation in the global climate system of period 65–70 years. Nature 367, 723–726 (1994).

    Google Scholar 

  11. 11.

    Mantua, N. J. et al. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 78, 1069–1079 (1997).

    Google Scholar 

  12. 12.

    Lenton, T. M., Dakos, V., Bathiany, S. & Scheffer, M. Observed trends in the magnitude and persistence of monthly temperature variability. Sci. Rep. 7, 5940 (2017).

    Google Scholar 

  13. 13.

    Boulton, C. A. & Lenton, T. M. Slowing down of North Pacific climate variability and its implications for abrupt ecosystem change. Proc. Natl Acad. Sci.USA 112, 11496–11501 (2015). Shows that the variability of the Pacific Decadal Oscillation has become redder in the period 1900–present and examines how this might affect (nonlinear) marine ecosystems.

    CAS  Google Scholar 

  14. 14.

    Huntingford, C., Jones, P. D., Livina, V. N., Lenton, T. M. & Cox, P. M. No increase in global temperature variability despite changing regional patterns. Nature 500, 327–330 (2013).

    CAS  Google Scholar 

  15. 15.

    Wagner, T. J. W. & Eisenman, I. False alarms: How early warning signals falsely predict abrupt sea ice loss. Geophys. Res. Lett. 42, 10333–10341 (2015).

    Google Scholar 

  16. 16.

    Bathiany, S. et al. Statistical indicators of Arctic sea-ice stability—prospects and limitations. Cryosphere 10, 1631–1645 (2016).

    Google Scholar 

  17. 17.

    Hänggi, P. & Jung, P. Colored noise in dynamical systems. Adv. Chem. Phys. 89, 239–326 (1995).

    Google Scholar 

  18. 18.

    Hänggi, P., Mroczkowski, T. J., Moss, F. & McClintock, P. V. E. Bistability driven by colored noise: Theory and experiment. Phys. Rev. A 32, 695–698 (1985).

    Google Scholar 

  19. 19.

    Horsthemke, W. & Lefever, R. in Noise-Induced Transitions 164–200 (Springer, Berlin, 1984).

  20. 20.

    Greenman, J. V. & Benton, T. G. The amplification of environmental noise in population models: causes and consequences. Am. Nat. 161, 225–239 (2003).

    CAS  Google Scholar 

  21. 21.

    Heino, M., Ripa, J. & Kaitala, V. Extinction risk under coloured environmental noise. Ecography 23, 177–184 (2000). Shows that because the sample variance of environmental noise is dependent on sample length, there cannot be general results on extinction risk in coloured environments.

    Google Scholar 

  22. 22.

    Mustin, K., Dytham, C., Benton, T. G. & Travis, J. M. J. Red noise increases extinction risk during rapid climate change. Divers. Distrib. 19, 815–824 (2013).

    Google Scholar 

  23. 23.

    Ripa, J. & Lundberg, P. Noise colour and the risk of population extinctions. Proc. R. Soc. Lond. B. 263, 1751–1753 (1996).

    Google Scholar 

  24. 24.

    Rudnick, D. L. & Davis, R. E. Red noise and regime shifts. Deep Sea Res. Pt I 50, 691–699 (2003).

    Google Scholar 

  25. 25.

    Schwager, M., Johst, K. & Jeltsch, F. Does red noise increase or decrease extinction risk? Single extreme events versus series of unfavorable conditions. Am. Nat. 167, 879–888 (2006).

    Google Scholar 

  26. 26.

    Vasseur, D. A. & Yodzis, P. The color of environmental noise. Ecology 85, 1146–1152 (2004).

    Google Scholar 

  27. 27.

    Vasseur, D. A. Populations embedded in trophic communities respond differently to coloured environmental noise. Theor. Popul. Biol. 72, 186–196 (2007).

    Google Scholar 

  28. 28.

    Petchey, O. L. Environmental colour affects aspects of single-species population dynamics. Proc. R. Soc. Lond. A 267, 747–754 (2000).

    CAS  Google Scholar 

  29. 29.

    Steele, J. H., Henderson, E. W., Mangel, M. & Clark, C. Coupling between physical and biological scales [and discussion]. Phil. Trans. R. Soc. B 343, 5–9 (1994). Shows that the diversity of patterns observed in populations is dependent on the relative timescales of forcing and response, indicating that the variability of environmental forces influences population dynamics.

    Google Scholar 

  30. 30.

    Steele, J. H. & Henderson, E. W. Modeling long-term fluctuations in fish stocks. Science 224, 985–987 (1984).

    CAS  Google Scholar 

  31. 31.

    Ludwig, D., Jones, D. D. & Holling, C. S. Qualitative analysis of insect outbreak systems: the spruce budworm and forest. J. Anim. Ecol. 47, 315–332 (1978).

    Google Scholar 

  32. 32.

    Dakos, V., van Nes, E. H., Donangelo, R., Fort, H. & Scheffer, M. Spatial correlation as leading indicator of catastrophic shifts. Theor. Ecol. 3, 163–174 (2009).

    Google Scholar 

  33. 33.

    van Nes, E. H., Hirota, M., Holmgren, M. & Scheffer, M. Tipping points in tropical tree cover: linking theory to data. Glob. Change Biol. 20, 1016–1021 (2014).

    Google Scholar 

  34. 34.

    van de Leemput, I. A., Hughes, T. P., van Nes, E. H. & Scheffer, M. Multiple feedbacks and the prevalence of alternate stable states on coral reefs. Coral Reefs 35, 857–865 (2016).

    Google Scholar 

  35. 35.

    Groisman, P. Y. et al. Trends in intense precipitation in the climate record. J. Clim. 18, 1326–1350 (2005).

    Google Scholar 

  36. 36.

    Allan, R. P. & Soden, B. J. Atmospheric warming and the amplification of precipitation extremes. Science 321, 1481–1484 (2008).

    CAS  Google Scholar 

  37. 37.

    Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S. & Xavier, P. K. Increasing trend of extreme rain events over India in a warming environment. Science 314, 1442–1445 (2006).

    CAS  Google Scholar 

  38. 38.

    Groisman, P. Y. & Knight, R. W. Prolonged dry episodes over the conterminous United States: new tendencies emerging during the last 40 years. J. Clim. 21, 1850–1862 (2008).

    Google Scholar 

  39. 39.

    Holmgren, M., Hirota, M., van Nes, E. H. & Scheffer, M. Effects of interannual climate variability on tropical tree cover. Nat. Clim. Change 3, 755–758 (2013). Illustrates how climate variability might affect ecosystems, by using satellite data to show the effect of higher interannual rainfall variability on tropical tree cover.

    Google Scholar 

  40. 40.

    Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259, 660–684 (2010).

    Google Scholar 

  41. 41.

    Nepstad, D. C., Tohver, I. M., Ray, D., Moutinho, P. & Cardinot, G. Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88, 2259–2269 (2007).

    Google Scholar 

  42. 42.

    da Costa, A. C. L. et al. Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest. New Phytol. 187, 579–591 (2010).

    Google Scholar 

  43. 43.

    Rowland, L. et al. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528, 119–122 (2015).

    CAS  Google Scholar 

  44. 44.

    Brando, P. M. et al. Abrupt increases in Amazonian tree mortality due to drought-fire interactions. Proc. Natl Acad. Sci. USA 111, 6347–6352 (2014).

    CAS  Google Scholar 

  45. 45.

    Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. USA 106, 20610–20615 (2009).

    CAS  Google Scholar 

  46. 46.

    van Nes, E. H. et al. Fire forbids fifty-fifty forest. PLoS ONE 13, e0191027 (2018).

    Google Scholar 

  47. 47.

    Zemp, D. C. et al. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nat. Commun. 8, 14681 (2017).

    CAS  Google Scholar 

  48. 48.

    Hirota, M., Holmgren, M., Van Nes, E. H. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).

    CAS  Google Scholar 

  49. 49.

    Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).

    CAS  Google Scholar 

  50. 50.

    Holmgren, M. & Scheffer, M. El Niño as a window of opportunity for the restoration of degraded arid ecosystems. Ecosystems 4, 151–159 (2001).

    Google Scholar 

  51. 51.

    Scheffer, M., Van Nes, E. H., Holmgren, M. & Hughes, T. Pulse-driven loss of top-down control: the critical-rate hypothesis. Ecosystems 11, 226–237 (2008).

    Google Scholar 

  52. 52.

    Staver, A. C., Bond, W. J., Stock, W. D., van Rensburg, S. J. & Waldram, M. S. Browsing and fire interact to suppress tree density in an African savanna. Ecol. Appl. 19, 1909–1919 (2009).

    Google Scholar 

  53. 53.

    Staver, A. C. & Bond, W. J. Is there a ‘browse trap’? Dynamics of herbivore impacts on trees and grasses in an African savanna. J. Ecol. 102, 595–602 (2014).

    Google Scholar 

  54. 54.

    Bond, W. J. What limits trees in C4 grasslands and savannas? Annu. Rev. Ecol. Evol. Syst. 39, 641–659 (2008).

    Google Scholar 

  55. 55.

    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    CAS  Google Scholar 

  56. 56.

    Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933 (2003).

    CAS  Google Scholar 

  57. 57.

    Eakin, C. M., Lough, J. M. & Heron, S. F. in Coral Bleaching: Patterns, Processes, Causes and Consequences (eds van Hoppen, M. J. H. & Lough, J. M.) 41–67 (Springer, Berlin, 2009).

  58. 58.

    Done, T. J. in The Ecology of Mangrove and Related Ecosystems (eds Jaccarini, V. & Martens, E) 121–132 (Developments in Hydrobiology 80, Springer, Dordrecht, 1992).

  59. 59.

    Knowlton, N. Thresholds and multiple stable states in coral reef community dynamics. Integr. Comp. Biol. 32, 674–682 (1992).

    Google Scholar 

  60. 60.

    McCook, L. J. Macroalgae, nutrients and phase shifts on coral reefs: scientific issues and management consequences for the Great Barrier Reef. Coral Reefs 18, 357–367 (1999).

    Google Scholar 

  61. 61.

    Barnett, J. & Adger, W. N. Climate change, human security and violent conflict. Polit. Geogr. 26, 639–655 (2007).

    Google Scholar 

  62. 62.

    Wilhite, D. A. in Drought: A Global Assessment Vol. I (ed. Wilhite, D. A.) 3–18 (Routledge, London, 2000).

  63. 63.

    McPeak, J. G. & Barrett, C. B. Differential risk exposure and stochastic poverty traps among East African pastoralists. Am. J. Agric. Econ. 83, 674–679 (2001).

    Google Scholar 

  64. 64.

    Barrett, C. B. & Carter, M. R. The economics of poverty traps and persistent poverty: empirical and policy implications. J. Dev. Stud. 49, 976–990 (2013).

    Google Scholar 

  65. 65.

    Carter, M. R., Little, P. D., Mogues, T. & Negatu, W. Poverty traps and natural disasters in Ethiopia and Honduras. World Dev. 35, 835–856 (2007).

    Google Scholar 

  66. 66.

    Hsiang, S. M., Burke, M. & Miguel, E. Quantifying the influence of climate on human conflict. Science 341, 1235367 (2013).

    Google Scholar 

  67. 67.

    Hsiang, S. M. & Burke, M. Climate, conflict, and social stability: what does the evidence say? Climatic Change 123, 39–55 (2014).

    Google Scholar 

  68. 68.

    Burke, M. B., Miguel, E., Satyanath, S., Dykema, J. A. & Lobell, D. B. Warming increases the risk of civil war in Africa. Proc. Natl Acad. Sci. USA 106, 20670–4 (2009).

    CAS  Google Scholar 

  69. 69.

    Buhaug, H. et al. One effect to rule them all? A comment on climate and conflict. Climatic Change 127, 391–397 (2014).

    Google Scholar 

  70. 70.

    Buhaug, H. Climate not to blame for African civil wars. Proc. Natl Acad. Sci. USA 107, 16477–16482 (2010).

    CAS  Google Scholar 

  71. 71.

    Hsiang, S. M. & Meng, K. C. Reconciling disagreement over climate-conflict results in Africa. Proc. Natl Acad. Sci. USA 111, 2100–2103 (2014).

    CAS  Google Scholar 

  72. 72.

    Scheffran, J., Brzoska, M., Kominek, J., Link, P. M. & Schilling, J. Climate change and violent conflict. Science 336, 869–871 (2012).

    CAS  Google Scholar 

  73. 73.

    Schleussner, C.-F., Donges, J. F., Donner, R. V. & Schellnhuber, H. J. Armed-conflict risks enhanced by climate-related disasters in ethnically fractionalized countries. Proc. Natl Acad. Sci. USA 113, 9216–9221 (2016).

    CAS  Google Scholar 

  74. 74.

    Cane, M. A. et al. Temperature and violence. Nat. Clim. Change 4, 234–235 (2014).

    Google Scholar 

  75. 75.

    Raleigh, C., Linke, A. & O’Loughlin, J. Extreme temperatures and violence. Nat. Clim. Change 4, 76–77 (2014).

    Google Scholar 

  76. 76.

    Adams, C., Ide, T., Barnett, J. & Detges, A. Sampling bias in climate–conflict research. Nat. Clim. Change 8, 200–203 (2018).

    Google Scholar 

  77. 77.

    Hsiang, S. M., Meng, K. C. & Cane, M. A. Civil conflicts are associated with the global climate. Nature 476, 438–441 (2011).

    CAS  Google Scholar 

  78. 78.

    IPCC Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (Cambridge Univ. Press, 2012).

  79. 79.

    Werrell, C. E., Femia, F. & Sternberg, T. Did we see it coming? State fragility, climate vulnerability, and the uprisings in Syria and Egypt. SAIS Rev. Int. Aff. 35, 29–46 (2015).

    Google Scholar 

  80. 80.

    Solh, M. Tackling the drought in Syria. Nature Middle East (27 September 2010).

  81. 81.

    Reuveny, R. Climate change-induced migration and violent conflict. Polit. Geogr. 26, 656–673 (2007).

    Google Scholar 

  82. 82.

    Erian, W., Katlan, B. & Babah, O. Drought Vulnerability in the Arab Region. Case Study: Drought in Syria Ten Years of Scarce Water (2000–2010) (ASCAD and UNISDR, 2011).

  83. 83.

    Wilkes, S. Iraqi refugees in Syria reluctant to return to home permanently: survey. UNHCR (8 October 2010).

  84. 84.

    von Uexkull, N., Croicu, M., Fjelde, H. & Buhaug, H. Civil conflict sensitivity to growing-season drought. Proc. Natl Acad. Sci. USA 113, 12391–12396 (2016).

    Google Scholar 

  85. 85.

    Kelley, C. P., Mohtadi, S., Cane, M. A., Seager, R. & Kushnir, Y. Climate change in the Fertile Crescent and implications of the recent Syrian drought. Proc. Natl Acad. Sci. USA 112, 3241–3246 (2015).

    CAS  Google Scholar 

  86. 86.

    Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).

    CAS  Google Scholar 

  87. 87.

    Smith, J. A. et al. Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier. Nature 541, 77–80 (2016).

    Google Scholar 

  88. 88.

    Schneider, D. P. & Steig, E. J. Ice cores record significant 1940s Antarctic warmth related to tropical climate variability. Proc. Natl Acad. Sci. USA 105, 12154–12158 (2008).

    CAS  Google Scholar 

  89. 89.

    Ovaskainen, O. & Meerson, B. Stochastic models of population extinction. Trends Ecol. Evol. 25, 643–652 (2010).

    Google Scholar 

  90. 90.

    Wissel, C. A universal law of the characteristic return time near thresholds. Oecologia 65, 101–107 (1984).

    CAS  Google Scholar 

  91. 91.

    Strogatz, S. H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (Westview, Colorado, 2014).

  92. 92.

    Held, H. & Kleinen, T. Detection of climate system bifurcations by degenerate fingerprinting. Geophys. Res. Lett. 31, L23207 (2004).

    Google Scholar 

  93. 93.

    Lenton, T. M. et al. Using GENIE to study a tipping point in the climate system. Phil. Trans. R. Soc. A 367, 871–884 (2009).

    Google Scholar 

  94. 94.

    Kleinen, T., Held, H. & Petschel-Held, G. The potential role of spectral properties in detecting thresholds in the Earth system: application to the thermohaline circulation. Ocean Dynam. 53, 53–63 (2003).

    Google Scholar 

  95. 95.

    Dakos, V. et al. Slowing down as an early warning signal for abrupt climate change. Proc. Natl Acad. Sci. USA 105, 14308–14312 (2008).

    CAS  Google Scholar 

  96. 96.

    Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

    Google Scholar 

  97. 97.

    Scheffer, M. et al. Creating a safe operating space for iconic ecosystems. Science 347, 1317–1319 (2015).

    CAS  Google Scholar 

  98. 98.

    McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 178, 719–739 (2008).

    Google Scholar 

  99. 99.

    Gustafson, E. J. & Sturtevant, B. R. Modeling forest mortality caused by drought stress: implications for climate change. Ecosystems 16, 60–74 (2013).

    Google Scholar 

Download references

Acknowledgements

This work was carried out under the programme of the Netherlands Earth System Science Centre (NESSC), financially supported by the Ministry of Education, Culture, and Science (OCW) and received funding from the European Union’s Horizon 2020 research and innovation Programme under the Marie Sklodowska-Curie grant. We thank A. Staal for the fruitful discussions and all the recommendations for literature to include in our tropical forest example, and I. van de Leemput for her input on the coral reef model.

Author information

Affiliations

Authors

Contributions

All authors contributed to the design of the study. B.v.d.B. was responsible for executing the study, with contributions to the code from E.H.v.N., to the Supplementary Methods section from S.B. and to the main paper from M.S. All authors discussed the results and implications and commented on the manuscript at all stages.

Corresponding author

Correspondence to Bregje van der Bolt.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Methods and Supplementary Results, including Supplementary Figures 1–4, Supplementary Table 1 and Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

van der Bolt, B., van Nes, E.H., Bathiany, S. et al. Climate reddening increases the chance of critical transitions. Nature Clim Change 8, 478–484 (2018). https://doi.org/10.1038/s41558-018-0160-7

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing