Climate change threatens the world’s marine protected areas

Abstract

Marine protected areas (MPAs) are a primary management tool for mitigating threats to marine biodiversity1,2. MPAs and the species they protect, however, are increasingly being impacted by climate change. Here we show that, despite local protections, the warming associated with continued business-as-usual emissions (RCP8.5)3 will likely result in further habitat and species losses throughout low-latitude and tropical MPAs4,5. With continued business-as-usual emissions, mean sea-surface temperatures within MPAs are projected to increase 0.035 °C per year and warm an additional 2.8 °C by 2100. Under these conditions, the time of emergence (the year when sea-surface temperature and oxygen concentration exceed natural variability) is mid-century in 42% of 309 no-take marine reserves. Moreover, projected warming rates and the existing ‘community thermal safety margin’ (the inherent buffer against warming based on the thermal sensitivity of constituent species) both vary among ecoregions and with latitude. The community thermal safety margin will be exceeded by 2050 in the tropics and by 2150 for many higher latitude MPAs. Importantly, the spatial distribution of emergence is stressor-specific. Hence, rearranging MPAs to minimize exposure to one stressor could well increase exposure to another. Continued business-as-usual emissions will likely disrupt many marine ecosystems, reducing the benefits of MPAs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Patterns of projected ocean warming.
Fig. 2: Latitudinal patterns of the year that environmental conditions will exceed predicted thresholds.
Fig. 3: Spatial distribution of temporary refugia from climate change and current coverage of MPAs.

Change history

  • 23 May 2018

    In the version of this Letter originally published, the x axes titles of Fig. 3 erroneously read ‘Latitude’; they should have read ‘Longitude’. This has been corrected in the online versions of the Letter.

References

  1. 1.

    Allison G. W., Lubchenco J. & Carr M. H. Marine reserves are necessary but not sufficient for marine conservation. Ecol. Appl. 8, S79–S92 (1998).

  2. 2.

    Edgar, G. J. et al. Global conservation outcomes depend on marine protected areas with five key features. Nature 506, 216–220 (2014).

    CAS  Google Scholar 

  3. 3.

    van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).

    Google Scholar 

  4. 4.

    Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J. & Bates, A. E. Thermal biases and vulnerability to warming in the world’s marine fauna. Nature 528, 88–92 (2015).

    CAS  Google Scholar 

  5. 5.

    García Molinos, J. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2015).

    Google Scholar 

  6. 6.

    Peters, R. L. The greenhouse effect and nature reserves. Bioscience 35, 707–717 (1985).

    Google Scholar 

  7. 7.

    Graham, N. A. J. et al. Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems. PLoS ONE 3, e3039 (2008).

    Google Scholar 

  8. 8.

    Monahan, W. B. & Fisichelli, N. A. Climate exposure of US national parks in a new era of change. PLoS ONE 9, e101302 (2014).

    Google Scholar 

  9. 9.

    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature (2017).

  10. 10.

    Selig, E. R., Casey, K. S. & Bruno, J. F. Temperature-driven coral decline: the role of marine protected areas. Glob. Change Biol. 18, 1561–1570 (2012).

    Google Scholar 

  11. 11.

    Henson, S. A. et al. Rapid emergence of climate change in environmental drivers of marine ecosystems. Nat. Commun. 8, 14682(2017).

    Google Scholar 

  12. 12.

    Gattuso, J.-P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722 (2015).

    Google Scholar 

  13. 13.

    Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).

    Google Scholar 

  14. 14.

    Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).

    CAS  Google Scholar 

  15. 15.

    Gleckler, P. J., Durack, P. J., Stouffer, R. J., Johnson, G. C. & Forest, C. E. Industrial-era global ocean heat uptake doubles in recent decades. Nat. Clim. Change 6, 394–398 (2016).

    Google Scholar 

  16. 16.

    Keeling, R. F., Arne, K. & Gruber, N. Ocean deoxygenation in a warming world. Annu Rev. Mar. Sci. 2, 199–229 (2010).

    Google Scholar 

  17. 17.

    Pörtner, H., Bock, C. & Mark, F. C. Oxygen- and capacity-limited thermal tolerance: bridging ecology and physiology. J. Exp. Biol. 220, 2685–2696 (2017).

    Google Scholar 

  18. 18.

    Chollett, I., Müller-Karger, F. E., Heron, S. F., Skirving, W. & Mumby, P. J. Seasonal and spatial heterogeneity of recent sea surface temperature trends in the Caribbean Sea and southeast Gulf of Mexico. Mar. Pollut. Bull. 64, 956–965 (2012).

    CAS  Google Scholar 

  19. 19.

    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).

    Google Scholar 

  20. 20.

    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).

    Google Scholar 

  21. 21.

    Kordas, R. L., Harley, C. D. G. & O’Connor, M. I. Community ecology in a warming world: the influence of temperature on interspecific interactions in marine systems. J. Exp. Mar. Bio. Ecol. 400, 218–226 (2011).

    Google Scholar 

  22. 22.

    Harley, C. D. G. et al. The impacts of climate change in coastal marine systems. Ecol. Lett. 9, 228–241 (2006).

    Google Scholar 

  23. 23.

    Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).

    CAS  Google Scholar 

  24. 24.

    Aronson, R. B. et al. Climate change and invasibility of the Antarctic benthos. Annu Rev. Ecol. Evol. Syst. 38, 129–154 (2007).

    Google Scholar 

  25. 25.

    Bruno, J. F., Carr, L. A. & O’Connor, M. I. Exploring the role of temperature in the ocean through metabolic scaling. Ecology 96, 3126–3140 (2015).

    Google Scholar 

  26. 26.

    Svensson, F. et al. In situ warming strengthens trophic cascades in a coastal food web. Oikos 126, 1150–1161 (2017).

    Google Scholar 

  27. 27.

    O’Connor, M. I., Piehler, M. F., Leech, D. M., Anton, A. & Bruno, J. F. Warming and resource availability shift food web structure and metabolism. PLoS Biol. 7, e1000178 (2009).

    Google Scholar 

  28. 28.

    Diffenbaugh, N. S. & Field, C. B. Changes in ecologically critical terrestrial climate conditions. Science 341, 486–492 (2013).

    Google Scholar 

  29. 29.

    Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).

    Google Scholar 

  30. 30.

    Cacciapaglia, C. & van Woesik, R. Reef-coral refugia in a rapidly changing ocean. Glob. Change Biol. 21, 2272–2282 (2015).

    Google Scholar 

  31. 31.

    McLeod, E., Salm, R., Green, A. & Almany, J. Designing marine protected area networks to address the impacts of climate change. Front Ecol. Environ. 7, 362–370 (2009).

    Google Scholar 

  32. 32.

    Jackson J. B. C. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–638 (2001).

    CAS  Google Scholar 

  33. 33.

    McCauley, D. J. Marine defaunation: animal loss in the global ocean. Science 347, 247–254 (2015).

    CAS  Google Scholar 

  34. 34.

    Valdivia, A., Cox, C. E. & Bruno J. F. Predatory fish depletion and recovery potential on Caribbean reefs. Sci. Adv. 3, e1601303 (2017).

  35. 35.

    Myers R. A. & Worm B. Rapid worldwide depletion of predatory fish communities. Nature 423, 280–283 (2003).

  36. 36.

    Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl Acad. Sci. USA 106, 12377–12381 (2009).

    CAS  Google Scholar 

  37. 37.

    Polidoro, B. A. et al. The loss of species: mangrove extinction risk and geographic areas of global concern. PLoS ONE 5, e10095 (2010).

    Google Scholar 

  38. 38.

    Bruno J. F. & Selig E. R. Regional decline of coral cover in the Indo-Pacific: timing, extent, and subregional comparisons. PLoS ONE 2, e711 (2007).

  39. 39.

    Lester, S. E. et al. Biological effects within no-take marine reserves: a global synthesis. Mar. Ecol. Prog. Ser. 384, 33–46 (2009).

    Google Scholar 

  40. 40.

    O’Leary, B. C. et al. Effective coverage targets for ocean protection. Conserv. Lett. 9, 398–404 (2016).

    Google Scholar 

  41. 41.

    Roberts, C. M. et al. Marine reserves can mitigate and promote adaptation to climate change. Proc. Natl Acad. Sci. USA 114, 6167–6175 (2017).

    CAS  Google Scholar 

  42. 42.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2015).

  43. 43.

    Hijmans, R. J. raster: geographic data analysis and modeling. R package v. 2.4-20 (R Foundation for Statistical Computing, 2015); http://CRAN.R-project.org/package=raster

  44. 44.

    van Hooidonk, R. J. et al. Local-scale projections of coral reef futures and implications of the Paris Agreement. Sci. Rep. 6, 39666 (2016).

    Google Scholar 

  45. 45.

    MPAtlas (Marine Conservation Institute, accessed 1 September 2016); www.mpatlas.org

  46. 46.

    Protected Planet: The World Database on Protected Areas (UNEP-WCMC and IUCN, 2016); www.protectedplanet.net

  47. 47.

    Tyberghein, L. Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 21, 272–281 (2012).

    Google Scholar 

  48. 48.

    Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J. & Bates, A. E. Thermal biases and vulnerability to warming in the world’s marine fauna. Nature 528, 88–92 (2015).

    CAS  Google Scholar 

  49. 49.

    Edgar, G. J. & Stuart-Smith, R. D. Systematic global assessment of reef fish communities by the Reef Life Survey program. Sci. Data 1, 140007 (2014).

    Google Scholar 

  50. 50.

    Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20, 5473–5496 (2007).

    Google Scholar 

Download references

Acknowledgements

We thank M. Ruddy for assistance with coding and data analysis, and for preparing Fig. 1. This research was supported by the US National Science Foundation (OCE-1535007 to R.B.A. and OCE-1737071 to J.F.B.). C.C. was supported by National Science Foundation grant OCE-1657633 to R. van Woesik. This is contribution 191 from the Institute for Research on Global Climate Change at the Florida Institute of Technology.

Author information

Affiliations

Authors

Contributions

J.F.B., R.B.A. and S.C.A. conceived the study. J.F.B., A.E.B., C.C. and S.A.H. performed the analysis. J.F.B., A.E.B., S.A.H. and R.B.A. interpreted the results. J.F.B., R.B.A. and A.E.B. wrote the manuscript, with substantial assistance from the other authors. A.E.B., E.P.P., R.v.H. and S.A.H. provided datasets.

Corresponding author

Correspondence to John F. Bruno.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary tables S1 and S2, Supplementary figures S1-S4

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bruno, J.F., Bates, A.E., Cacciapaglia, C. et al. Climate change threatens the world’s marine protected areas. Nature Clim Change 8, 499–503 (2018). https://doi.org/10.1038/s41558-018-0149-2

Download citation

Further reading