Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The carbon footprint of global tourism

An Author Correction to this article was published on 23 May 2018

This article has been updated


Tourism contributes significantly to global gross domestic product, and is forecast to grow at an annual 4%, thus outpacing many other economic sectors. However, global carbon emissions related to tourism are currently not well quantified. Here, we quantify tourism-related global carbon flows between 160 countries, and their carbon footprints under origin and destination accounting perspectives. We find that, between 2009 and 2013, tourism’s global carbon footprint has increased from 3.9 to 4.5 GtCO2e, four times more than previously estimated, accounting for about 8% of global greenhouse gas emissions. Transport, shopping and food are significant contributors. The majority of this footprint is exerted by and in high-income countries. The rapid increase in tourism demand is effectively outstripping the decarbonization of tourism-related technology. We project that, due to its high carbon intensity and continuing growth, tourism will constitute a growing part of the world’s greenhouse gas emissions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Carbon footprint measures of selected top-ranking countries for 2013.
Fig. 2: Top bilateral embodied carbon movements.
Fig. 3: Top bilateral embodied carbon movements to and/or from Europe.
Fig. 4: Breakdown of the tourism carbon footprint into purchased commodities and emitting industries, and into high-, middle- and low-income countries.
Fig. 5: Affluence and technology as drivers of the carbon footprint of global tourism for the RBA perspective.

Change history

  • 23 May 2018

    In the version of this Article originally published, in the penultimate paragraph of the section “Gas species and supply chains”, in the sentence “In this assessment, the contribution of air travel emissions amounts to 20% (0.9 GtCO2e) of tourism’s global carbon footprint...” the values should have read “12% (0.55 GtCO2e)”; this error has now been corrected, and Supplementary Table 9 has been amended to clarify this change.


  1. 1.

    Travel & Tourism: Economic Impact 2017 (World Travel & Tourism Council, 2017);

  2. 2.

    UNWTO Tourism Highlights 2016 Edition (World Tourism Organization, 2016);

  3. 3.

    Gössling, S. Global environmental consequences of tourism. Glob. Environ. Change 12, 283–302 (2002).

    Google Scholar 

  4. 4.

    Scott, D., Gössling, S. & Hall, C. M. International tourism and climate change. WIREs Clim. Change 3, 213–232 (2012).

    Google Scholar 

  5. 5.

    Puig, R. et al. Inventory analysis and carbon footprint of coastland-hotel services: a Spanish case study. Sci. Total Environ. 595, 244–254 (2017).

    CAS  Google Scholar 

  6. 6.

    El Hanandeh, A. Quantifying the carbon footprint of religious tourism: the case of Hajj. J. Clean. Prod. 52, 53–60 (2013).

    Google Scholar 

  7. 7.

    Pereira, R. P. T., Ribeiro, G. M. & Filimonau, V. The carbon footprint appraisal of local visitor travel in Brazil: a case of the Rio de Janeiro–São Paulo itinerary. J. Clean. Prod. 141, 256–266 (2017).

    CAS  Google Scholar 

  8. 8.

    Munday, M., Turner, K. & Jones, C. Accounting for the carbon associated with regional tourism consumption. Tour. Manag. 36, 35–44 (2013).

    Google Scholar 

  9. 9.

    Sun, Y.-Y. A framework to account for the tourism carbon footprint at island destinations. Tour. Manage. 45, 16–27 (2014).

    Google Scholar 

  10. 10.

    Cadarso, M. Á., Gómez, N., López, L. A. & Tobarra, M. A. Calculating tourisms carbon footprint: measuring the impact of investments. J. Clean. Prod. 111, 529–537 (2016).

    Google Scholar 

  11. 11.

    Cadarso, M.-Á., Gómez, N., López, L.-A., TobarraM.-Á. & Zafrilla, J.-E. Quantifying Spanish tourisms carbon footprint: the contributions of residents and visitors: a longitudinal study. J. Sustain. Tour. 23, 922–946 (2015).

    Google Scholar 

  12. 12.

    Becken, S. & Patterson, M. Measuring national carbon dioxide emissions from tourism as a key step towards achieving sustainable tourism. J. Sustain. Tour. 14, 323–338 (2006).

    Google Scholar 

  13. 13.

    Dwyer, L., Forsyth, P., Spurr, R. & Hoque, S. Estimating the carbon footprint of Australian tourism. J. Sustain. Tour. 18, 355–376 (2010).

    Google Scholar 

  14. 14.

    Sharp, H., Grundius, J. & Heinonen, J. Carbon footprint of inbound tourism to Iceland: a consumption-based life-cycle assessment including direct and indirect emissions. Sustainability 8, 1147 (2016).

    Google Scholar 

  15. 15.

    Luo, F., Becken, S. & Zhong, Y. Changing travel patterns in China and ‘carbon footprint’ implications for a domestic tourist destination. Tour. Manag. 65, 1–13 (2018).

    Google Scholar 

  16. 16.

    Climate Change and Tourism—Responding to Global Challenges (World Tourist Organisation, United Nations Environment Programme, World Meteorological Organisation, 2008);

  17. 17.

    Peeters, P. & Dubois, G. Tourism travel under climate change mitigation constraints. J. Transp. Geogr. 18, 447–457 (2010).

    Google Scholar 

  18. 18.

    Gössling, S. & Peeters, P. Assessing tourisms global environmental impact 1900–2050. J. Sustain. Tour. 23, 639–659 (2015).

    Google Scholar 

  19. 19.

    Kander, A., Jiborn, M., Moran, D. D. & Wiedmann, T. O. National greenhouse-gas accounting for effective climate policy on international trade. Nat. Clim. Change 5, 431–435 (2015).

    Google Scholar 

  20. 20.

    ICAO Environmental Report 2016—Aviation and Climate Change (International Civil Aviation Organization, 2016).

  21. 21.

    Lee, D. S. et al. Transport impacts on atmosphere and climate: aviation. Atmos. Environ. 44, 4678–4734 (2010).

    CAS  Google Scholar 

  22. 22.

    Perch-Nielsen, S., Sesartic, A. & Stucki, M. The greenhouse gas intensity of the tourism sector: the case of Switzerland. Environ. Sci. Policy 13, 131–140 (2010).

    CAS  Google Scholar 

  23. 23.

    Peters, G., Minx, J., Weber, C. & Edenhofer, O. Growth in emission transfers via international trade from 1990 to 2008. Proc. Natl Acad. Sci. USA 108, 8903–8908 (2011).

    CAS  Google Scholar 

  24. 24.

    Malik, A., Lan, J. & Lenzen, M. Trends in global greenhouse gas emissions from 1990 to 2010. Environ. Sci. Technol. 50, 4722–4730 (2016).

    CAS  Google Scholar 

  25. 25.

    GDP Per Capita, Current Prices (International Monetary Fund, 2017);

  26. 26.

    Annual Energy Outlook 2017 With Projections to 2050 (US Energy Information Administration, 2017);

  27. 27.

    OECD Environmental Outlook to 2050 (OECD Environment Directorate, PBL Netherlands Environmental Assessment Agency, 2011);

  28. 28.

    Wier, M., Lenzen, M., Munksgaard, J. & Smed, S. Effects of household consumption patterns on CO2 requirements. Econ. Syst. Res. 13, 259–274 (2001).

    Google Scholar 

  29. 29.

    Lenzen, M. et al. A comparative multivariate analysis of household energy requirements in Australia, Brazil, Denmark, India and Japan. Energy 31, 181–207 (2006).

    Google Scholar 

  30. 30.

    Lenzen, M., Dey, C. & Foran, B. Energy requirements of Sydney households. Ecol. Econ. 49, 375–399 (2004).

    Google Scholar 

  31. 31.

    Garin-Munoz, T. & Amaral, T. P. An econometric model for international tourism flows to Spain. Appl. Econ. Lett. 7, 525–529 (2000).

    Google Scholar 

  32. 32.

    Lim, C., Min, J. C. H. & McAleer, M. Modelling income effects on long and short haul international travel from Japan. Tour. Manage. 29, 1099–1109 (2008).

    Google Scholar 

  33. 33.

    Song, H. & Wong, K. K. Tourism demand modeling: a time-varying parameter approach. J. Travel Res. 42, 57–64 (2003).

    Google Scholar 

  34. 34.

    Cohen, C. A. M. J., Lenzen, M. & Schaeffer, R. Energy requirements of households in Brazil. Energy Policy 55, 555–562 (2005).

    Google Scholar 

  35. 35.

    Mishra, S. S. & Bansal, V. Role of source–destination proximity in international inbound tourist arrival: empirical evidences from India. Asia Pac. J. Tour. Res. 22, 540–553 (2017).

    Google Scholar 

  36. 36.

    Wong, I. A., Fong, L. H. N. & LawR. A longitudinal multilevel model of tourist outbound travel behavior and the dual-cycle model. J. Travel Res. 55, 957–970 (2016).

    Google Scholar 

  37. 37.

    Dubois, G. & Ceron, J. P. Tourism/leisure greenhouse gas emissions forecasts for 2050: factors for change in France. J. Sustain. Tour. 14, 172–191 (2006).

    Google Scholar 

  38. 38.

    Filimonau, V., Dickinson, J. & Robbins, D. The carbon impact of short-haul tourism: a case study of UK travel to southern France using life cycle analysis. J. Clean. Prod. 64, 628–638 (2014).

    Google Scholar 

  39. 39.

    Gössling, S., Scott, D. & Hall, C. M. Inter-market variability in CO2 emission-intensities in tourism: implications for destination marketing and carbon management. Tour. Manage. 46, 203–212 (2015).

    Google Scholar 

  40. 40.

    Gössling, S. et al. The eco-efficiency of tourism. Ecol. Econ. 54, 417–434 (2005).

    Google Scholar 

  41. 41.

    Hatfield-Dodds, S. et al. Australia is ‘free to choose’ economic growth and falling environmental pressures. Nature 527, 49–53 (2015).

    CAS  Google Scholar 

  42. 42.

    Lenzen, M., Malik, A. & Foran, B. How challenging is decoupling for Australia?. J. Clean. Prod. 139, 796–798 (2016).

    Google Scholar 

  43. 43.

    Gössling., S. Sustainable tourism development in developing countries: some aspects of energy use. J. Sustain. Tour. 8, 410–425 (2000).

    Google Scholar 

  44. 44.

    Székely, T. Hungary plans ‘major touristic developments’ to double income from foreign tourism. Hungary Today (13 February 2017);

  45. 45.

    Nepal unveils plans to double tourist arrival. Nepal24Hours (12 December 2012);

  46. 46.

    Murai, S. Japan doubles overseas tourist target for 2020. Japan Times (30 March 2016);

  47. 47.

    McElroy, J. L. Small island tourist economies across the life cycle. Asia. Pac. Viewp. 47, 61–77 (2006).

    Google Scholar 

  48. 48.

    Lenzen, M. Sustainable island businesses: a case study of Norfolk Island. J. Clean. Prod. 16, 2018–2035 (2008).

    CAS  Google Scholar 

  49. 49.

    de Bruijn, K., Dirven, R., Eijgelaar, E. & Peeters, P. Travelling Large in 2013: The Carbon Footprint of Dutch Holidaymakers in 2013 and the Development Since 2002 (NHTV Breda University of Applied Sciences, 2014).

  50. 50.

    Sun, Y. -Y. Decomposition of tourism greenhouse gas emissions: revealing the dynamics between tourism economic growth, technological efficiency, and carbon emissions. Tour. Manage. 55, 326–336 (2016).

    Google Scholar 

  51. 51.

    Wilkinson, P. F. Island tourism: sustainable perspectives. Ann. Tour. Res. 39, 505–506 (2012).

    Google Scholar 

  52. 52.

    Tourism Statistics (World Tourism Organization, 2017);

  53. 53.

    Lenzen, M., Kanemoto, K., Moran, D. & Geschke, A. Mapping the structure of the world economy. Environ. Sci. Technol. 46, 8374–8381 (2012).

    CAS  Google Scholar 

  54. 54.

    Lenzen, M., Moran, D., Kanemoto, K. & Geschke, A. Building EORA: a global multi-region input–output database at high country and sector resolution. Econ. Syst. Res. 25, 20–49 (2013).

    Google Scholar 

  55. 55.

    Leontief, W. W. & Strout, A. A. in Structural Interdependence and Economic Development (ed. Barna, T.) 119–149 (Macmillan, Basingstoke, 1963).

  56. 56.

    Oita, A. et al. Substantial nitrogen pollution embedded in international trade. Nat. Geosci. 9, 111–115 (2016).

    CAS  Google Scholar 

  57. 57.

    Feng, K., Davis, S. J., Sun, L. & Hubacek, K. Drivers of the US CO2 emissions 1997–2013. Nat. Commun. 6, 7714 (2015).

    CAS  Google Scholar 

  58. 58.

    Steinberger, J. K., Roberts, J. T., Peters, G. P. & Baiocchi, G. Pathways of human development and carbon emissions embodied in trade. Nat. Clim. Change 2, 81–85 (2012).

    CAS  Google Scholar 

  59. 59.

    Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).

    CAS  Google Scholar 

  60. 60.

    Lin, J. et al. Global climate forcing of aerosols embodied in international trade. Nat. Geosci. 9, 790 (2016).

    CAS  Google Scholar 

  61. 61.

    Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543, 700 (2017).

    CAS  Google Scholar 

  62. 62.

    Zhang, Q. et al. Transboundary health impacts of transported global air pollution and international trade. Nature 543, 705 (2017).

    CAS  Google Scholar 

  63. 63.

    Travel & Tourism: Economic Impact Research Methodology (World Travel & Tourism Council, Oxford Economics, 2017);

  64. 64.

    Leontief, W. Input–Output Economics (Oxford Univ. Press, Oxford, 1966).

  65. 65.

    Dixon, R. Inter-industry transactions and input–output analysis. Aust. Econ. Rev. 3, 327–336 (1996).

    Google Scholar 

  66. 66.

    Munksgaard, J. & Pedersen, K. A. CO2 accounts for open economies: producer or consumer responsibility? Energy Policy 29, 327–334 (2001).

    Google Scholar 

  67. 67.

    Kanemoto, K. & Murray, J. in The Sustainability Practitioner’s Guide to Input–Output Analysis (eds Murray, J. & Wood, R.) 167–178 (Common Ground, Champaign, 2010).

  68. 68.

    Kanemoto, K., Lenzen, M., Peters, G. P., Moran, D. & Geschke, A. Frameworks for comparing emissions associated with production, consumption and International trade. Environ. Sci. Technol. 46, 172–179 (2012).

    CAS  Google Scholar 

  69. 69.

    Waugh, F. V. Inversion of the Leontief matrix by power series. Econometrica 18, 142–154 (1950).

    Google Scholar 

  70. 70.

    Lenzen, M. et al. The Global MRIO Lab—charting the world economy. Econ. Syst. Res. 29, 158–186 (2017).

    Google Scholar 

  71. 71.

    Systems of National Accounts (International Monetary Fund, Commission of the European Communities-Euro-Stat, Organisation for Economic Co-operation and Development, World Bank, United Nations, 1993).

  72. 72.

    TSA Data Around the World: Worldwide Summary (World Tourism Organization, 2010).

  73. 73.

    Tourism Statistics 2009–2013 (World Tourism Organization, 2009–2013).

  74. 74.

    Chasapopoulos, P., den Butter, F. A. & Mihaylov, E. Demand for tourism in Greece: a panel data analysis using the gravity model. Int. J. Tour. Policy 5, 173–191 (2014).

    Google Scholar 

  75. 75.

    Morley, C., Rosselló, J. & Santana-Gallego, M. Gravity models for tourism demand: theory and use. Ann. Tour. Res. 48, 1–10 (2014).

    Google Scholar 

  76. 76.

    Lloyd, S. M. & Ries, R. Characterizing, propagating, and analyzing uncertainty in life-cycle assessment: a survey of quantitative approaches. J. Indust. Ecol. 11, 161–179 (2007).

    Google Scholar 

  77. 77.

    Imbeault-Tétreault, H., Jolliet, O., Deschênes, L. & Rosenbaum, R. K. Analytical propagation of uncertainty in life cycle assessment using matrix formulation. J. Indust. Ecol. 17, 485–492 (2013).

    Google Scholar 

  78. 78.

    Lenzen, M. Aggregation versus disaggregation in input-output analysis of the environment. Econ. Syst. Res 23, 73–89 (2011).

    Google Scholar 

  79. 79.

    Bullard, C. W. & Sebald, A. V. Effects of parametric uncertainty and technological change on input-output models. Rev. Econ. Stat. 59, 75–81 (1977).

    Google Scholar 

  80. 80.

    Bullard, C. W. & Sebald, A. V. Monte Carlo sensitivity analysis of input-output models. Rev. Econ. Stat. 70, 708–712 (1988).

    Google Scholar 

  81. 81.

    Nansai, K., Tohno, S. & Kasahara, M. Uncertainty of the embodied CO2 emission intensity and reliability of life cycle inventory analysis by input-output approach (in Japanese). Energy Resour. 22, (2001).

  82. 82.

    Yoshida, Y. et al. Reliability of LCI considering the uncertainties of energy consumptions in input-output analyses. Appl. Energy 73, 71–82 (2002).

    CAS  Google Scholar 

  83. 83.

    Lenzen, M., Wood, R. & Wiedmann, T. Uncertainty analysis for multi-region input-output models — a case study of the UK’s carbon footprint. Econ. Syst. Res 22, 43–63 (2010).

    Google Scholar 

Download references


This work was financially supported by the Australian Research Council through its Discovery Projects DP0985522 and DP130101293, the National eResearch Collaboration Tools and Resources project (NeCTAR) through its Industrial Ecology Virtual Laboratory, and the Taiwan Ministry of Science and Technology (no. 105-2410-H-006-055-MY3). The authors thank S. Juraszek for expertly managing the Global IELab’s advanced computation requirements, and C. Jarabak for help with collecting data.

Author information




Y.-Y.S. and M.L. conceived and designed the experiments. M.L., Y.-Y.S., F.F., Y.-P.T., A.G. and A.M. performed the experiments. F.F., Y.-P.T., M.L. and Y.-Y.S. analysed the data. Y.-P.T., A.G., Y.-Y.S. and M.L. contributed materials/analysis tools. M.L., Y.-Y.S. and A.M. wrote the paper.

Corresponding author

Correspondence to Arunima Malik.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Notes, Supplementary Data, Supplementary Results, Supplementary Figures 1–13, Supplementary Tables 1–14, Supplementary Discussion and Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lenzen, M., Sun, YY., Faturay, F. et al. The carbon footprint of global tourism. Nature Clim Change 8, 522–528 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing