Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Anthropogenic warming exacerbates European soil moisture droughts

Abstract

Anthropogenic warming is anticipated to increase soil moisture drought in the future. However, projections are accompanied by large uncertainty due to varying estimates of future warming. Here, using an ensemble of hydrological and land-surface models, forced with bias-corrected downscaled general circulation model output, we estimate the impacts of 1–3 K global mean temperature increases on soil moisture droughts in Europe. Compared to the 1.5 K Paris target, an increase of 3 K—which represents current projected temperature change—is found to increase drought area by 40% (±24%), affecting up to 42% (±22%) more of the population. Furthermore, an event similar to the 2003 drought is shown to become twice as frequent; thus, due to their increased occurrence, events of this magnitude will no longer be classified as extreme. In the absence of effective mitigation, Europe will therefore face unprecedented increases in soil moisture drought, presenting new challenges for adaptation across the continent.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distribution functions of drought areas and durations for different levels of global warming.
Fig. 2: Spatial distribution of changes in drought area, duration and frequency.
Fig. 3: Changes in aridity for various warming levels.
Fig. 4: Changes in the European population within the largest drought events.

Similar content being viewed by others

References

  1. Dai, A., Trenberth, K. & Qian, T. A global dataset of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming. J. Hydrometeorol. 5, 1117–1130 (2004).

    Article  Google Scholar 

  2. Greve, P., Gudmundsson, L. & Seneviratne, S. I. Regional scaling of annual mean precipitation and water availability with global temperature change. Earth Syst. Dynam. 9, 227–240 (2018).

    Article  Google Scholar 

  3. Hirschi, M. et al. Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat. Geosci. 4, 17–21 (2010).

    Article  Google Scholar 

  4. Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2013).

    Article  Google Scholar 

  5. Seneviratne, S. I. et al. Impact of soil moisture-climate feedbacks on CMIP5 projections: First results from the GLACE-CMIP5 experiment. Geophys. Res. Lett. 40, 5212–5217 (2013).

    Article  Google Scholar 

  6. Trenberth, K. E. et al. Global warming and changes in drought. Nat. Clim. Change 4, 17–22 (2014).

    Article  Google Scholar 

  7. Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion underclimate change. Nat. Clim. Change 316, 847–171 (2015).

    Google Scholar 

  8. Berg, A., Sheffield, J. & Milly, P. C. D. Divergent surface and total soil moisture projections under global warming. Geophys. Res. Lett. 44, 236–244 (2017).

    Article  Google Scholar 

  9. Cook, B. I., Ault, T. R. & Smerdon, J. E. Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv. 1, e1400082–e1400082 (2015).

    Article  Google Scholar 

  10. UNFCCC Adoption of the Paris Agreement, Proposal by the President Report No. FCCC/CP/2015/L.9 (United Nations, 2015).

  11. Raftery, A. E., Zimmer, A., Frierson, D. M. W., Startz, R. & Liu, P. Less than 2°C warming by 2100 unlikely. Nat. Clim. Change 109, 13915–13917 (2017).

    Google Scholar 

  12. Collins, M. et al. Quantifying future climate change. Nat. Clim. Change 2, 403–409 (2012).

    Article  Google Scholar 

  13. Prudhomme, C. et al. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc. Natl Acad. Sci. USA 111, 3262–3267 (2014).

    Article  CAS  Google Scholar 

  14. Wanders, N., Wada, Y. & Van Lanen, H. A. J. Global hydrological droughts in the 21st century under a changing hydrological regime. Earth Syst. Dynam. 6, 1–15 (2015).

    Article  Google Scholar 

  15. James, R., Washington, R., Schleussner, C.-F., Rogelj, J. & Conway, D. Characterizing half-a-degree difference: a review of methods for identifying regional climate responses to global warming targets. WIREs Clim. Change 8, 1–23 (2017).

    Article  Google Scholar 

  16. Wilhite, D. Drought: A Global Assessment Vol., I. 3–18 (Routledge, London, 2000).

  17. Moore, F. C. & Lobell, D. B. Adaptation potential of European agriculture in response to climate change. Nat. Clim. Change 4, 610–614 (2014).

    Article  Google Scholar 

  18. Van Lanen, H. A. et al. Hydrology needed to manage droughts: the 2015 European case. Hydrol. Process. 30, 3097–3104 (2016).

    Article  Google Scholar 

  19. Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).

    Article  CAS  Google Scholar 

  20. Samaniego, L., Kumar, R. & Zink, M. Implications of parameter uncertainty on soil moisture drought analysis in Germany. J. Hydrometeorol. 14, 47–68 (2013).

    Article  Google Scholar 

  21. Samaniego, L. et al. Propagation of forcing and model uncertainties on to hydrological drought characteristics in a multi-model century-long experiment in large river basins. Climatic Change 141, 435–449 (2016).

    Article  Google Scholar 

  22. Lehner, F. et al. Projected drought risk in 1.5°C and 2°C warmer climates. Geophys. Res. Lett. 44, 7419–7428 (2017).

    Article  Google Scholar 

  23. Sheffield, J., Wood, E. F. & Roderick, M. L. Little change in global drought over the past 60 years. Nature 491, 435–438 (2012).

    Article  CAS  Google Scholar 

  24. Warszawski, L. et al. The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): Project framework. Proc. Natl Acad. Sci. USA 111, 3228–3232 (2014).

    Article  CAS  Google Scholar 

  25. Samaniego, L. EDgE Model Chain and Development of Sectoral Climate Impact Indicators (Copernicus Climate Change Service, 2017); http://edge.climate.copernicus.eu

  26. Kovats, R. et al. in Climate Change 2014: Impacts, Adaptation and Vulnerability (eds Barros, V. et al.) 1267–1326 (Cambridge Univ. Press, Cambridge, 2011).

  27. Metzger, M. J., Bunce, R. G. H., Jongman, R. H. G., Mücher, C. A. & Watkins, J. W. A climatic stratification of the environment of Europe. Glob. Ecol. Biogeogr. 14, 549–563 (2005).

    Article  Google Scholar 

  28. Rötter, R. P., Carter, T. R., Olesen, J. E. & Porter, J. R. Crop–climate models need an overhaul. Nat. Clim. Change 1, 175–177 (2011).

    Article  Google Scholar 

  29. Guiot, J. & Cramer, W. Climate change: The 2015 Paris Agreement thresholds and Mediterranean basin ecosystems. Science 354, 465–468 (2016).

    Article  CAS  Google Scholar 

  30. Seneviratne, S. I., Donat, M. G., Pitman, A. J., Knutti, R. & Wilby, R. L. Allowable CO2 emissions based on regional and impact-related climate targets. Nature 529, 477–483 (2016).

    Article  CAS  Google Scholar 

  31. Robine, J.-M.et al. Death toll exceeded 70,000 in Europe during the summer of 2003. C. R. Biol. 331, 171–178 2008).

    Article  Google Scholar 

  32. Wilbanks, T. et al. in Climate Change 2007: Impacts, Adaptation and Vulnerability (eds Parry, M. L. et al.) 357–390 (IPCC, Cambridge Univ. Press, 2007).

  33. Hempel, S., Frieler, K., Warszawski, L., Schewe, J. & Piontek, F. A trend-preserving bias correction — the ISI-MIP approach. Earth Syst. Dynam. 4, 219–236 (2013).

    Article  Google Scholar 

  34. McSweeney, C. F. & Jones, R. G. How representative is the spread of climate projections from the 5 CMIP5 GCMs used in ISI-MIP? Clim. Serv. 1, 24–29 (2016).

    Article  Google Scholar 

  35. Samaniego, L., Kumar, R. & Attinger, S. Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resour. Res. 46, W05523 (2010).

    Google Scholar 

  36. Kumar, R., Samaniego, L. & Attinger, S. Implications of distributed hydrologic model parameterization on water fluxes at multiple scales and locations. Water Resour. Res. 49, 360–379 (2013).

    Article  Google Scholar 

  37. Sutanudjaja, E. H. et al. PCR-GLOBWB 2: a 5 arc-minute global hydrological and water resources model. Geosci. Model Dev. Discuss. 2017, 1–41 (2017).

    Article  Google Scholar 

  38. Niu, G.-Y. et al. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. 116, D12109 (2011).

    Article  Google Scholar 

  39. Liang, X., Lettenmaier, D., Wood, E. & Burges, S. A simple hydrologically based model of land-surface water and energy fluxes for general-circulation models. J. Geophys. Res. Atmos. 99, 14415–14428 (1994).

    Article  Google Scholar 

  40. Haylock, M. R. et al. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res. 113, D20119 (2008).

    Article  Google Scholar 

  41. Rakovec, O. et al. Multiscale and multivariate evaluation of water fluxes and states over European river basins. J. Hydrometeorol. 17, 287–307 (2016).

    Article  Google Scholar 

  42. Cuntz, M. et al. The impact of standard and hard-coded parameters on the hydrologic fluxes in the Noah-MP land surface model. J. Geophys. Res. Atmos. 121, 10676–10700 (2016).

    Article  Google Scholar 

  43. Vautard, R. et al. The European climate under a 2 degrees C global warming. Environ. Res. Lett. 9, 034006 (2014).

    Article  Google Scholar 

  44. Hawkins, E. et al. Estimating changes in global temperature since the preindustrial period. Bull. Am. Meteorol. Soc. 98, 1841–1856 (2017).

    Article  Google Scholar 

  45. Palmer, W. C. Meteorological Drought Research Paper 45 (Office of Climatology, Weather Bureau, 1965).

  46. Wells, N., Goddard, S. & Hayes, M. J. A self-calibrating Palmer Drought Severity Index. J. Clim. 17, 2335–2351 (2004).

    Article  Google Scholar 

  47. Hargreaves, G. H. & Samani, Z. A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1, 96–99 (1985).

    Article  Google Scholar 

Download references

Acknowledgements

This study was partially performed under a contract for the Copernicus Climate Change Service (edge.climate.copernicus.eu). ECMWF implements this service and the Copernicus Atmosphere Monitoring Service on behalf of the European Commission. This study has been mainly funded within the scope of the HOKLIM project (www.ufz.de/hoklim) by the German Ministry for Education and Research (grant number 01LS1611A). We would like to thank P. Greve for providing data included in Supplementary Fig. 4. We acknowledge the funding from NWO Rubicon 825.15.003. We acknowledge the E-OBS dataset from the EU FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu). We would like to thank people from various organizations and projects for kindly providing us with the data that were used in this study, which includes ISI-MIP, JRC, NASA, GRDC, BGR and ISRIC. This study was carried out within the Helmholtz-Association climate initiative REKLIM (www.reklim.de).

Author information

Authors and Affiliations

Authors

Contributions

L.S. and S.T. designed the study and wrote the manuscript. S.T., R.K., N.W. and M.P. conducted the model runs. O.R. and M.Z. conducted analysis of the data. All authors contributed to interpreting results.

Corresponding author

Correspondence to L. Samaniego.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–9

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samaniego, L., Thober, S., Kumar, R. et al. Anthropogenic warming exacerbates European soil moisture droughts. Nature Clim Change 8, 421–426 (2018). https://doi.org/10.1038/s41558-018-0138-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-018-0138-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing