Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Experimental effects of climate messages vary geographically

Abstract

Social science scholars routinely evaluate the efficacy of diverse climate frames using local convenience or nationally representative samples1,2,3,4,5. For example, previous research has focused on communicating the scientific consensus on climate change, which has been identified as a ‘gateway’ cognition to other key beliefs about the issue6,7,8,9. Importantly, although these efforts reveal average public responsiveness to particular climate frames, they do not describe variation in message effectiveness at the spatial and political scales relevant for climate policymaking. Here we use a small-area estimation method to map geographical variation in public responsiveness to information about the scientific consensus as part of a large-scale randomized national experiment (n = 6,301). Our survey experiment finds that, on average, public perception of the consensus increases by 16 percentage points after message exposure. However, substantial spatial variation exists across the United States at state and local scales. Crucially, responsiveness is highest in more conservative parts of the country, leading to national convergence in perceptions of the climate science consensus across diverse political geographies. These findings not only advance a geographical understanding of how the public engages with information about scientific agreement, but will also prove useful for policymakers, practitioners and scientists engaged in climate change mitigation and adaptation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Experimental treatment effect sizes for each US state.
Fig. 2: The change in belief in the scientific consensus on climate change.
Fig. 3: Experimental treatment effect ordered by pre-treatment estimates of beliefs in the scientific consensus.
Fig. 4: Experimental treatment effect sizes for each US congressional district.

References

  1. 1.

    Nisbet, M. C. Communicating climate change: why frames matter for public engagement. Environment 51, 12–23 (2009).

    Google Scholar 

  2. 2.

    Gifford, R. & Comeau, L. A. Message framing influences perceived climate change competence, engagement, and behavioral intentions. Glob. Environ. Change 21, 1301–1307 (2011).

    Article  Google Scholar 

  3. 3.

    Myers, T. A., Nisbet, M. C., Maibach, E. W. & Leiserowitz, A. A. A public health frame arouses hopeful emotions about climate change. Climatic Change 113, 1105–1112 (2012).

    Article  Google Scholar 

  4. 4.

    Wiest, S. L., Raymond, L. & Clawson, R. A. Framing, partisan predispositions, and public opinion on climate change. Glob. Environ. Change 31, 187–198 (2015).

    Article  Google Scholar 

  5. 5.

    Spence, A. & Pidgeon, N. Framing and communicating climate change: the effects of distance and outcome frame manipulations. Glob. Environ. Change 20, 656–667 (2010).

    Article  Google Scholar 

  6. 6.

    Lewandowsky, S., Gignac, G. E. & Vaughan, S. The pivotal role of perceived scientific consensus in acceptance of science. Nat. Clim. Change 3, 399–404 (2013).

    Article  Google Scholar 

  7. 7.

    van der Linden, S. L., Leiserowitz, A. A., Feinberg, G. D. & Maibach, E. W. The scientific consensus on climate change as a gateway belief: experimental evidence. PLoS ONE 10, e0118489 (2015).

    Article  Google Scholar 

  8. 8.

    Ding, D., Maibach, E. W., Zhao, X., Roser-Renouf, C. & Leiserowitz, A. Support for climate policy and societal action are linked to perceptions about scientific agreement. Nat. Clim. Change 1, 462–466 (2011).

    Article  Google Scholar 

  9. 9.

    McCright, A. M., Dunlap, R. E. & Xiao, C. Perceived scientific agreement and support for government action on climate change in the USA. Climatic Change 119, 511–518 (2013).

    Article  Google Scholar 

  10. 10.

    Oreskes, N. The scientific consensus on climate change. Science 306, 1686 (2004).

    CAS  Article  Google Scholar 

  11. 11.

    Doran, P. T. & Zimmerman, M. K. Examining the scientific consensus on climate change. Eos 90, 22–23 (2009).

    Article  Google Scholar 

  12. 12.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  13. 13.

    Anderegg, W. R., Prall, J. W., Harold, J. & Schneider, S. H. Expert credibility in climate change. Proc. Natl Acad. Sci. USA 107, 12107–12109 (2010).

    CAS  Article  Google Scholar 

  14. 14.

    Cook, J. et al. Consensus on consensus: a synthesis of consensus estimates on human-caused global warming. Environ. Res. Lett. 11, 048002 (2016).

    Article  Google Scholar 

  15. 15.

    Leiserowitz, A, Maibach, E, Roser-Renouf, C, Feinberg, G. & Rosenthal, S. Climate Change in the American Mind: March, 2016 (Yale Univ. and George Mason Univ., New Haven, 2016).

  16. 16.

    Oreskes, N. & Conway, E. M. Merchants of Doubt: How a Handful of Scientists Obscured the Truth on Issues from Tobacco Smoke to Global Warming (Bloomsbury, New York, 2011).

  17. 17.

    Boykoff, M. T. & Boykoff, J. M. Balance as bias: global warming and the US prestige press. Glob. Environ. Change 14, 125–136 (2004).

    Article  Google Scholar 

  18. 18.

    Freudenburg, W. R. & Muselli, V. Global warming estimates, media expectations, and the asymmetry of scientific challenge. Glob. Environ. Change 20, 483–491 (2010).

    Article  Google Scholar 

  19. 19.

    McCright, A. M. & Dunlap, R. E. Anti-reflexivity the American conservative movement’s success in undermining climate science and policy. Theory Cult. Soc. 27, 100–133 (2010).

    Article  Google Scholar 

  20. 20.

    Hmielowski, J. D., Feldman, L., Myers, T. A., Leiserowitz, A. & Maibach, E. An attack on science? Media use, trust in scientists, and perceptions of global warming. Public Underst. Sci. 23, 866–883 (2013).

    Article  Google Scholar 

  21. 21.

    Koehler, D. J. Can journalistic "false balance" distort public perception of consensus in expert opinion?. J. Exp. Psychol. Appl. 22, 24–38 (2016).

    Article  Google Scholar 

  22. 22.

    van der Linden, S., Leiserowitz, A., Rosenthal, S. & Maibach, E. Inoculating the public against misinformation about climate change. Global Chall. 1, 1600008 (2017).

  23. 23.

    Aklin, M. & Urpelainen, J. Perceptions of scientific dissent undermine public support for environmental policy. Environ. Sci. Policy 38, 173–177 (2014).

    Article  Google Scholar 

  24. 24.

    Van der Linden, S. L., Clarke, C. E. & Maibach, E. W. Highlighting consensus among medical scientists increases public support for vaccines: evidence from a randomized experiment. BMC Public Health 15, 1207 (2015).

    Article  Google Scholar 

  25. 25.

    Dixon, G. Applying the gateway belief model to genetically modified food perceptions: new insights and additional questions. J. Commun. 66, 888–908 (2016).

    Article  Google Scholar 

  26. 26.

    McCright, A. M. & Dunlap, R. E. The politicization of climate change and polarization in the American public’s views of global warming, 2001–2010. Sociol. Q. 52, 155–194 (2011).

    Article  Google Scholar 

  27. 27.

    Bolsen, T. & Druckman, J. N. Counteracting the politicization of science. J. Commun. 65, 745–769 (2015).

    Article  Google Scholar 

  28. 28.

    Kahan, D. M., Jenkins-Smith, H. & Braman, D. Cultural cognition of scientific consensus. J. Risk Res. 14, 147–174 (2011).

    Article  Google Scholar 

  29. 29.

    Corner, A. & Clarke, J. Talking Climate: From Research to Practice in Public Engagement (Springer, London, 2016).

    Google Scholar 

  30. 30.

    Hill, J. L. Bayesian nonparametric modeling for causal inference. J. Comput. Graph. Stat. 20, 217–240 (2011).

    Article  Google Scholar 

  31. 31.

    Green, D. P. & Kern, H. L. Modeling heterogeneous treatment effects in survey experiments with Bayesian additive regression trees. Public Opin. Q. 76, 491–511 (2012).

    Article  Google Scholar 

  32. 32.

    Wager, S. & Athey, S. Estimation and inference of heterogeneous treatment effects using random forests. J. Am. Stat. Assoc. https://doi.org/10.1080/01621459.2017.1319839 (2017).

    CAS  Article  Google Scholar 

  33. 33.

    Athey, S. & Imbens, G. Recursive partitioning for heterogeneous causal effects. Proc. Natl. Acad. Sci. USA 113, 7353–7360 (2015).

    Article  Google Scholar 

  34. 34.

    Rentfrow, P. J., Gosling, S. D. & Potter, J. A theory of the emergence, persistence, and expression of geographic variation in psychological characteristics. Perspect. Psychol. Sci. 3, 339–369 (2008).

    Article  Google Scholar 

  35. 35.

    Rentfrow, P. J. Geographical Psychology: Exploring the Interaction of Environment and Behavior (American Psychological Association, Washington, DC, 2014).

  36. 36.

    Motyl, M., Iyer, R., Oishi, S., Trawalter, S. & Nosek, B. A. How ideological migration geographically segregates groups. J. Exp. Soc. Psychol. 51, 1–14 (2014).

    Article  Google Scholar 

  37. 37.

    Howe, P. D., Mildenberger, M., Marlon, J. R. & Leiserowitz, A. Geographic variation in opinions on climate change at state and local scales in the USA. Nat. Clim. Change 5, 596–603 (2015).

    Article  Google Scholar 

  38. 38.

    Mildenberger, M. et al. The distribution of climate change public opinions in Canada. PLoS ONE 11, e0159774 (2016).

    Article  Google Scholar 

  39. 39.

    Mildenberger, M., Marlon, J. R., Howe, P. D. & Leiserowitz, A. The spatial distribution of Republican and Democratic climate opinions at state and local scales. Climatic Change 145, 539–548 (2017).

    Article  Google Scholar 

  40. 40.

    Lax, J. R. & Phillips, J. H. Gay rights in the States: public opinion and policy responsiveness. Am. Polit. Sci. Rev. 103, 367–386 (2009).

    Article  Google Scholar 

  41. 41.

    Lax, J. R. & Phillips, J. H. The democratic deficit in the States. Am. J. Pol. Sci. 56, 148–166 (2012).

    Article  Google Scholar 

  42. 42.

    Cook, J., Lewandowsky, S. & Ecker, U. K. Neutralizing misinformation through inoculation: exposing misleading argumentation techniques reduces their influence. PLoS ONE 12, e0175799 (2017).

    Article  Google Scholar 

  43. 43.

    van der Linden, S., Leiserowitz, A. & Maibach, E. Scientific agreement can neutralize politicization of facts. Nat. Hum. Behav. 2, 2–3 (2018).

    Article  Google Scholar 

  44. 44.

    Bolsen, T., Druckman, J. N. & Cook, F. L. The influence of partisan motivated reasoning on public opinion. Polit. Behav. 36, 235–262 (2014).

    Article  Google Scholar 

  45. 45.

    Krosnick, J. & MacInnis, B. in Social Psychology and Politics (eds Forgas, J. P. et al.) 75–90 (Psychology Press, New York, 2015).

  46. 46.

    Jost, J. T., van der Linden, S., Panagopoulos, C. & Hardin, C. D. Ideological asymmetries in conformity, desire for shared reality, and the spread of misinformation. Curr. Opin. Psychol. 23, 77–83 (2018).

    Article  Google Scholar 

  47. 47.

    Rentfrow, P. J. Statewide differences in personality: toward a psychological geography of the United States. Am. Psychol. 65, 548–558 (2010).

    Article  Google Scholar 

  48. 48.

    Gerber, A. S., Huber, G. A., Doherty, D., Dowling, C. M. & Ha, S. E. Personality and political attitudes: relationships across issue domains and political contexts. Am. Polit. Sci. Rev. 104, 111–133 (2010).

    Article  Google Scholar 

  49. 49.

    Greenland, S. Principles of multilevel modelling. Int. J. Epidemiol. 29, 158–167 (2000).

    CAS  Article  Google Scholar 

  50. 50.

    Pacheco, J. Using national surveys to measure dynamic U.S. state public opinion: a guideline for scholars and an application. State Polit. Policy Q. 11, 415–439 (2011).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

B.Z., M.M., P.D.H. and J.R.M. developed and implemented the model. S.v.d.L. and A.L. collected the data and designed the national experiment and survey with input from all authors. B.Z., S.v.d.L. and M.M. drafted a first version of the manuscript. P.D.H., J.R.M. and A.L. all provided critical input to the writing and results and approved the final version of the manuscript.

Corresponding author

Correspondence to Baobao Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3, Supplementary Figures 1–7 and Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., van der Linden, S., Mildenberger, M. et al. Experimental effects of climate messages vary geographically. Nature Clim Change 8, 370–374 (2018). https://doi.org/10.1038/s41558-018-0122-0

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing