Towards demand-side solutions for mitigating climate change

Research on climate change mitigation tends to focus on supply-side technology solutions. A better understanding of demand-side solutions is missing. We propose a transdisciplinary approach to identify demand-side climate solutions, investigate their mitigation potential, detail policy measures and assess their implications for well-being.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1


  1. 1.

    Wilson, C., Grubler, A., Gallagher, K. S. & Nemet, G. F. Marginalization of end-use technologies in energy innovation for climate protection. Nat. Clim. Change 2, 780–788 (2012).

    Article  Google Scholar 

  2. 2.

    Roy, J., Dowd, A.-M., Muller, A., Pal, S. & Prata, N. in Global Energy Assessment (GEA) 1527–1548 (Cambridge Univ. Press, 2012).

  3. 3.

    Anderson, K., Quéré, C. L. & Mclachlan, C. Radical emission reductions: the role of demand reductions in accelerating full decarbonization. J. Carbon Manage. 5, 321–323 (2014).

    Article  CAS  Google Scholar 

  4. 4.

    Stern, P. C., Sovacool, B. K. & Dietz, T. Towards a science of climate and energy choices. Nat. Clim. Change 6, 547–555 (2016).

    Article  Google Scholar 

  5. 5.

    Creutzig, F. et al. Beyond technology: demand-side solutions for climate change mitigation. Annu. Rev. Environ. Resour. 41, 173–198 (2016).

    Article  Google Scholar 

  6. 6.

    Minx, J., Callaghan, M. W., Lamb, W. F., Kowarsch, M. & Edenhofer, O. Learning about climate change solutions in the IPCC and beyond. Environ. Sci. Policy 77, 252–259 (2017).

    Article  Google Scholar 

  7. 7.

    von Stechow, C. et al. 2° C and SDGs: united they stand, divided they fall? Environ. Res. Lett. 11, 034022 (2016).

    Article  Google Scholar 

  8. 8.

    Mattioli, G. Transport needs in a climate-constrained world. A novel framework to reconcile social and environmental sustainability in transport. Energy Res. Soc. Sci 18, 118–128 (2016).

    Article  Google Scholar 

  9. 9.

    Kunreuther, H. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 151–192 (IPCC, Cambridge Univ. Press, 2014).

  10. 10.

    Ebeling, F. & Lotz, S. Domestic uptake of green energy promoted by opt-out tariffs. Nat. Clim. Change 5, 868–871 (2015).

    Article  Google Scholar 

  11. 11.

    Shove, E. Beyond the ABC: climate change policy and theories of social change. Environ. Plan. A 42, 1273–1285 (2010).

    Article  Google Scholar 

  12. 12.

    Geels, F. W. Ontologies, socio-technical transitions (to sustainability), and the multi-level perspective. Res. Policy 39, 495–510 (2010).

    Article  Google Scholar 

  13. 13.

    Nyborg, K. et al. Social norms as solutions. Science 354, 42–43 (2016).

    Article  CAS  Google Scholar 

  14. 14.

    Lichtenstein, S. & Slovic, P. The Construction of Preference (Cambridge Univ. Press, Cambridge, 2006).

  15. 15.

    Wood, R. et al. Prioritizing consumption-based carbon policy based on the evaluation of mitigation potential using input–output methods. J. Ind. Ecol. (2017).

  16. 16.

    Azevedo, I. M. Consumer end-use energy efficiency and rebound effects. Annu. Rev. Environ. Resour. 39, 393–418 (2014).

    Article  Google Scholar 

  17. 17.

    Steinberger, J. K., Roberts, J. T., Peters, G. P. & Baiocchi, G. Pathways of human development and carbon emissions embodied in trade. Nat. Clim. Change 2, 81–85 (2012).

    Article  CAS  Google Scholar 

  18. 18.

    Lamb, W. F. & Steinberger, J. K. Human well-being and climate change mitigation. WIRES Clim. Change 8, e485 (2017).

    Article  Google Scholar 

  19. 19.

    Mattauch, L., Ridgway, M. & Creutzig, F. Happy or liberal? Making sense of behavior in transport policy design. Transp. Res. D 45, 64–83 (2016).

    Article  Google Scholar 

  20. 20.

    Gough, I. & McGregor, J. A. Wellbeing in Developing Countries: From Theory to Research (Cambridge Univ. Press, New York, 2007).

  21. 21.

    Mastrucci, A. & Rao, N. D. Decent housing in the developing world: reducing life-cycle energy requirements. Energy Build 152, 629–642 (2017).

    Article  Google Scholar 

  22. 22.

    Sovacool, B. K. The political economy of energy poverty: a review of key challenges. Energy Sustain. Dev. 16, 272–282 (2012).

    Article  Google Scholar 

  23. 23.

    Dalkmann, H. & Brannigan, C. Transport and Climate Change. Module 5e. Sustainable Transport: A Sourcebook for Policy-Makers in Developing Cities (GTZ, 2007).

Download references


W.B.d.B. acknowledges financial support from the Swedish Foundation for the Humanities and the Social Sciences; J.K.S. and F.W.G. from the UK ESRC (ES/K006576/1 and EP/K011790/1); C.H. from the Oxford Martin School; O.Y.E. and M.T. from the EU ERC (no. 154 336155) and N.D.R. from the EU ERC (no. 637462); I.M.L.A. from the Center for Climate and Energy Decision Making (SES-1463492); J.C.M. from the German Ministry of Research and Education (03EK3046B) and L.M. from the German Academic Exchange Service.

Author information



Corresponding author

Correspondence to Felix Creutzig.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Creutzig, F., Roy, J., Lamb, W.F. et al. Towards demand-side solutions for mitigating climate change. Nature Clim Change 8, 260–263 (2018).

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing