Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks


Seagrass ecosystems contain globally significant organic carbon (C) stocks. However, climate change and increasing frequency of extreme events threaten their preservation. Shark Bay, Western Australia, has the largest C stock reported for a seagrass ecosystem, containing up to 1.3% of the total C stored within the top metre of seagrass sediments worldwide. On the basis of field studies and satellite imagery, we estimate that 36% of Shark Bay’s seagrass meadows were damaged following a marine heatwave in 2010/2011. Assuming that 10 to 50% of the seagrass sediment C stock was exposed to oxic conditions after disturbance, between 2 and 9 Tg CO2 could have been released to the atmosphere during the following three years, increasing emissions from land-use change in Australia by 4–21% per annum. With heatwaves predicted to increase with further climate warming, conservation of seagrass ecosystems is essential to avoid adverse feedbacks on the climate system.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Shark Bay World Heritage Site with spatial distribution of seagrass.
Fig. 2: Spatial distribution of organic carbon in seagrass sediments of Shark Bay.
Fig. 3: Spatial distribution of organic carbon stocks in seagrass sediments of Shark Bay.
Fig. 4: Seagrass extent change within Shark Bay’s Marine Park before (2002) and after (2014) the marine heatwave in 2010/2011.


  1. 1.

    McLeod, E. et al. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011).

    Article  Google Scholar 

  2. 2.

    Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Change 3, 961–968 (2013).

    CAS  Article  Google Scholar 

  3. 3.

    IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, Cambridge, UK, 2014).

  4. 4.

    Pendleton, L. et al. Estimating global 'blue carbon' emissions from conversion and degradation of vegetated coastal ecosystems. PLoS One 7, e43542 (2012).

  5. 5.

    Short, F., Polidoro, B. & Livingstone, S. Extinction risk assessment of the world’s seagrass species. Biol. Conserv. 144, 1961–1971 (2011).

    Article  Google Scholar 

  6. 6.

    Fourqurean, J. W. et al. Seagrass ecosystems as a globally significant carbon stock. Nat. Geosci. 5, 505–509 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    Lavery, P. S., Mateo, M. Á., Serrano, O. & Rozaimi, M. Variability in the carbon storage of seagrass habitats and its implications for global estimates of blue carbon ecosystem service. PLoS One 8, e73748 (2013).

  8. 8.

    Serrano, O. et al. Key biogeochemical factors affecting soil carbon storage in Posidonia meadows. Biogeosciences 13, 4581–4594 (2016).

    Article  Google Scholar 

  9. 9.

    Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl Acad. Sci. USA 106, 12377–12381 (2009).

    CAS  Article  Google Scholar 

  10. 10.

    Marbà, N. & Duarte, C. M. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Glob. Change Biol. 16, 2366–2375 (2009).

    Article  Google Scholar 

  11. 11.

    Fraser, M. W., Kendrick, G. A., Statton, J., Hovey, R. K. & Walker, D. I. Extreme climate events lower resilience of foundation seagrass at edge of biogeographical range. J. Ecol. 102, 1528–1536 (2014).

    Article  Google Scholar 

  12. 12.

    Thomson, J. A. et al. Extreme temperatures, foundation species, and abrupt ecosystem change: an example from an iconic seagrass ecosystem. Glob. Change Biol. 21, 1463–1474 (2014).

    Article  Google Scholar 

  13. 13.

    Nowicki, R., Thomson, J. A., Burkholder, D. A., Fourqurean, J. W. & Heithaus, M. Predicting seagrass recovery times and their implications following an extreme climate event. Mar. Ecol. Prog. Ser. 567, 79–93 (2017).

  14. 14.

    Walker, B., Holling, C. & Carpenter, S. Resilience, adaptability and transformability in social–ecological systems. Ecol. Soc. 9, 5 (2004).

  15. 15.

    Walker, D., Kendrick, G. & McComb, A. The distribution of seagrass species in Shark Bay, Western Australia, with notes on their ecology. Aquat. Bot. 30, 305–317 (1988).

    Article  Google Scholar 

  16. 16.

    Bufarale, G. & Collins, L. B. Stratigraphic architecture and evolution of a barrier seagrass bank in the mid-late Holocene, Shark Bay, Australia. Mar. Geol. 359, 1–21 (2015).

    Article  Google Scholar 

  17. 17.

    Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82 (2012).

    Article  Google Scholar 

  18. 18.

    Pearce, A. & Feng, M. Observations of warming on the Western Australian continental shelf. Mar. Freshw. Res. 58, 914–920 (2007).

    Article  Google Scholar 

  19. 19.

    Arias-Ortiz, A. et al. A Marine Heat Wave Drives Massive Losses from the World’s Largest Seagrass Carbon Stocks (Edith Cowan University, 2017);

  20. 20.

    Lovelock, C. E., Fourqurean, J. W. & Morris, J. T. Modeled CO2 emissions from coastal wetland transitions to other land uses: tidal marshes, mangrove forests, and seagrass beds. Front. Mar. Sci. 4, 1–11 (2017).

    Article  Google Scholar 

  21. 21.

    Burkholder, D. A., Heithaus, M. R., Thomson, J. A. & Fourqurean, J. W. Diversity in trophic interactions of green sea turtles Chelonia mydas on a relatively pristine coastal foraging ground. Mar. Ecol. Prog. Ser. 439, 277–293 (2011).

    Article  Google Scholar 

  22. 22.

    Cawley, K. M., Ding, Y., Fourqurean, J. & Jaffé, R. Characterising the sources and fate of dissolved organic matter in Shark Bay, Australia: A preliminary study using optical properties and stable carbon isotopes. Mar. Freshw. Res. 63, 1098–1107 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    Kennedy, H. et al. Seagrass sediments as a global carbon sink: Isotopic constraints. Glob. Biogeochem. Cycles 24, 1–9 (2010).

    Article  Google Scholar 

  24. 24.

    Trevathan-Tackett, S. M. et al. Comparison of marine macrophytes for their contributions to blue carbon sequestration. Ecology 96, 3043–3057 (2015).

    Article  Google Scholar 

  25. 25.

    Laursen, A. K., Mayer, L. M. & Townsend, D. W. Lability of proteinaceous material in estuarine seston and subcellular fractions of phytoplankton. Mar. Ecol. Prog. Ser. 136, 227–234 (1996).

    CAS  Article  Google Scholar 

  26. 26.

    Enríquez, S., Duarte, C. M. & Sand-Jensen, K. Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content. Oecologia 94, 457–471 (1993).

    Article  Google Scholar 

  27. 27.

    Serrano, O., Lavery, P. S., López-Merino, L., Ballesteros, E. & Mateo, M. A. Location and associated carbon storage of erosional escarpments of seagrass Posidonia mats. Front. Mar. Sci. 3, 42 (2016).

    Article  Google Scholar 

  28. 28.

    Prentice, I. et al. in Climate Change 2001: The Scientific Basis (eds Houghton, J. T. et al.) 185–237 (IPCC, Cambridge Univ. Press, 2001).

  29. 29.

    Davis, G. in Carbonate Sedimentation and Environments, Shark Bay, Western Australia Vol. 13 (eds Logan, B. W. et al.) 169–205 (Memoirs, American Association of Petroleum Geologists, Tulsa, OK, USA, 1970).

  30. 30.

    Mazarrasa, I. et al. Effect of environmental factors (wave exposure and depth) and anthropogenic pressure in the C sink capacity of Posidonia oceanica meadows. Limnol. Oceanogr. 62, 1436–1450 (2017).

    CAS  Article  Google Scholar 

  31. 31.

    Marbà, N. et al. Impact of seagrass loss and subsequent revegetation on carbon sequestration and stocks. J. Ecol. 103, 296–302 (2015).

    Article  Google Scholar 

  32. 32.

    Serrano, O. et al. Impact of mooring activities on carbon stocks in seagrass meadows. Sci. Rep. 6, 23193 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    Orem, W. H. et al. Geochemistry of Florida Bay sediments: nutrient history at five sites in eastern and central Florida Bay. J. Coast. Res. 15, 1055–1071 (1999).

    Google Scholar 

  34. 34.

    Macreadie, P. I. et al. Carbon sequestration by Australian tidal marshes. Sci. Rep. 7, 44071 (2017).

    Article  Google Scholar 

  35. 35.

    Atwood, T. B. et al. Global patterns in mangrove soil carbon stocks and losses. Nat. Clim. Change 7, 523–528 (2017).

    CAS  Article  Google Scholar 

  36. 36.

    Lovelock, C. E. et al. Assessing the risk of carbon dioxide emissions from blue carbon ecosystems. Front. Ecol. Environ. 15, 257–265 (2017).

    Article  Google Scholar 

  37. 37.

    van der Heide, T., van Nes, E. H., van Katwijk, M. M., Olff, H. & Smolders, A. J. P. Positive feedbacks in seagrass ecosystems — Evidence from large-scale empirical data. PLoS ONE 6, 1–7 (2011).

  38. 38.

    Burdige, D. J. Preservation of organic matter in marine sediments: Controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem. Rev. 107, 467–485 (2007).

    CAS  Article  Google Scholar 

  39. 39.

    Haverd, V. et al. The Australian terrestrial carbon budget. Biogeosciences 10, 851–869 (2013).

    Article  Google Scholar 

  40. 40.

    Cambridge, M. L., Bastyan, G. R. & Walker, D. I. Recovery of Posidonia meadows in Oyster Harbour, southwestern Australia. Bull. Mar. Sci. 71, 1279–1289 (2002).

    Google Scholar 

  41. 41.

    Marbá, N. & Walker, D. I. Growth, flowering, and population dynamics of temperate Western Australian seagrasses. Mar. Ecol. Prog. Ser. 184, 105–118 (1999).

    Article  Google Scholar 

  42. 42.

    Burdige, D. J., Zimmerman, R. C. & Hu, X. Rates of carbonate dissolution in permeable sediments estimated from pore-water profiles: The role of sea grasses. Limnol. Oceanogr. 53, 549–565 (2008).

    CAS  Article  Google Scholar 

  43. 43.

    Pedersen, M., Serrano, O. & Mateo, M. Temperature effects on decomposition of a Posidonia oceanica mat. Aquat. Microb. Ecol. 65, 169–182 (2011).

    Article  Google Scholar 

  44. 44.

    Tomasko, D. A., Corbett, C. A., Greening, H. S. & Raulerson, G. E. Spatial and temporal variation in seagrass coverage in Southwest Florida: assessing the relative effects of anthropogenic nutrient load reductions and rainfall in four contiguous estuaries. Mar. Pollut. Bull. 50, 797–805 (2005).

    CAS  Article  Google Scholar 

  45. 45.

    Björk, M, Short, F. T, Mcleod, E. & Beer, S. Managing Seagrasses for Resilience to Climate Change . Resilience Science Group Working Paper No. 3. (IUCN: Gland, 2008.

  46. 46.

    Kilminster, K. et al. Unravelling complexity in seagrass systems for management: Australia as a microcosm. Sci. Total Environ. 534, 97–109 (2015).

    CAS  Article  Google Scholar 

  47. 47.

    Tanner, J. E. Restoration of the seagrass Amphibolis antarctica—Temporal variability and long-term success. Estuaries Coasts 38, 668–678 (2015).

    CAS  Article  Google Scholar 

  48. 48.

    Rivers, D. O., Kendrick, G. A. & Walker, D. I. Microsites play an important role for seedling survival in the seagrass Amphibolis antarctica. J. Exp. Mar. Bio. Ecol. 401, 29–35 (2011).

    Article  Google Scholar 

  49. 49.

    Atwood, T. B. et al. Predators help protect carbon stocks in blue carbon ecosystems. Nat. Clim. Change 5, 1038–1045 (2015).

    Article  Google Scholar 

  50. 50.

    Hancock, N. & Hughes, L. Turning up the heat on the provenance debate: Testing the ‘local is best’ paradigm under heatwave conditions. Austral Ecol. 39, 600–611 (2014).

    Article  Google Scholar 

  51. 51.

    Fourqurean, J. W., Kendrick, G. A., Collins, L. S., Chambers, R. M. & Vanderklift, M. A. Carbon, nitrogen and phosphorus storage in subtropical seagrass meadows: Examples from Florida Bay and Shark Bay. Mar. Freshw. Res 63, 967–983 (2012).

    CAS  Article  Google Scholar 

  52. 52.

    Glew, J. R., Smol, J. P. & Last, W. M. in Tracking Environmental Change Using Lake Sediments: Basin Analysis, Coring, and Chronological Techniques (eds Last, W. M. & Smol, J. P.) 73–105 (Springer Netherlands, Dordrecht, 2001).

  53. 53.

    Phillips, S. C., Johnson, J. E., Miranda, E. & Disenhof, C. Improving CHN measurements in carbonate-rich marine sediments. Limnol. Oceanogr. Methods 9, 194–203 (2011).

    CAS  Article  Google Scholar 

  54. 54.

    Brodie, C. R. et al. Evidence for bias in C and N concentrations and δ13C composition of terrestrial and aquatic organic materials due to pre-analysis acid preparation methods. Chem. Geol. 282, 67–83 (2011).

    CAS  Article  Google Scholar 

  55. 55.

    Phillips, D. L. & Gregg, J. W. Source partitioning using stable isotopes: Coping with too many sources. Oecologia 136, 261–269 (2003).

    Article  Google Scholar 

  56. 56.

    Wentworth, C. A scale of grade and class terms for clastic sediments. J. Geol. 30, 377–392 (1922).

    Article  Google Scholar 

  57. 57.

    Flemming, B. W. A revised textural classification of gravel-free muddy sediments on the basis of ternary diagrams. Cont. Shelf Res. 20, 1125–1137 (2000).

    Article  Google Scholar 

  58. 58.

    Sanchez-Cabeza, J. A., Masqué, P. & Ani-Ragolta, I. 210Pb and 210Po analysis in sediments and soils by microwave acid digestion. J. Radioanal. Nucl. Chem. 227, 19–22 (1998).

    CAS  Article  Google Scholar 

  59. 59.

    Masqué, P., Sanchez-Cabeza, J. & Bruach, J. Balance and residence times of 210Pb and 210Po in surface waters of the northwestern Mediterranean Sea. Cont. Shelf Res. 22, 2127–2146 (2002).

    Article  Google Scholar 

  60. 60.

    Krishnaswamy, S., Lal, D., Martin, J. M. & Meybeck, M. Geochronology of lake sediments. Earth Planet. Sci. Lett. 11, 407–414 (1971).

    CAS  Article  Google Scholar 

  61. 61.

    Stuiver, M. & Polach, H. A. Discussion reporting of 14C data. Radiocarbon 19, 355–363 (1977).

    Article  Google Scholar 

  62. 62.

    Blaauw, M. & Christen, J. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474 (2011).

    Google Scholar 

  63. 63.

    Squire, P. et al. A marine reservoir correction for the Houtman-Abrolhos archipelago, East Indian Ocean, Western Australia. Radiocarbon 55, 103–114 (2013).

    CAS  Article  Google Scholar 

  64. 64.

    Webster, R. & Oliver, M. A. Geostatistics for environmental scientists (Statistics in Practice) (John Wiley & Sons, Chichester, UK, 2001).

    Google Scholar 

  65. 65.

    Wackernagel, H. Multivariate Geostatistics: An Introduction with Applications (Springer, New York, USA, 2003).

  66. 66.

    Department of Biodiversity, Conservation and Attractions Marine Habitats of Western Australia. 2nd edn, (Western Australia Government: Perth, Australia, 2016).

Download references


This work was supported by the CSIRO Flagship Marine and Coastal Carbon Biogeochemical Cluster with funding from the CSIRO Flagship Collaboration Fund and by King Abdullah University of Science and Technology through the baseline funding to C.M.D., P.M. and A.A.-O., and M.A.M. acknowledge the support by the Generalitat de Catalunya (grants 2014 SGR-1356 and 2014 SGR-120, respectively). This work is contributing to the ICTA `Unit of Excellence' (MinECo, MDM2015-0552) and is contribution no. 78 from the Marine Education and Research Center at the Institute for Water and Environment at Florida International University. A.A.-O. was supported by a PhD scholarship from Obra Social `LaCaixa'. O.S. was supported by an ARC DECRA DE170101524. M.R. was supported by the Research University grant UKM-DIP-2017-005. N.M. was supported by a Gledden Visiting Fellowship of IAS-UWA and the Medshift project (CGL2015-71809-P) and J.W.F. was supported by the US National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research programme (grant DEB-1237517). Partial laboratory analysis was supported by the Hodgkin Trust Top-up Scholarship 2013 awarded to M.R. We thank G. Bufarale and L. Collins for their assistance in collecting the cores and C. X. Pita, King Abdullah University of Science and Technology (KAUST), for the artwork in Fig. 2 and Supplementary Fig. 1. Seagrass spatial distribution in Fig. 1 from the Department of Biodiversity, Conservation and Attractions of Western Australia.

Author information




O.S., P.L., G.A.K. and C.M.D. designed the study. A.A.O., O.S., M.R., A.E. and N.M. carried out field and/or laboratory measurements. U.M. derived geostatistical models and A.A.O. and P.M. derived dating models. K.M. and M.R. mapped seagrass area. J.W.F. and M.A.M. contributed data. A.A.O. analysed the data and drafted the first version of the manuscript. All authors contributed to the writing and editing of the manuscript.

Corresponding author

Correspondence to A. Arias-Ortiz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Supplementary Figures 1–4, Supplementary Tables 1–4 and Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arias-Ortiz, A., Serrano, O., Masqué, P. et al. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nature Clim Change 8, 338–344 (2018).

Download citation

Further reading


Quick links