Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Anthropogenic range contractions bias species climate change forecasts

Abstract

Forecasts of species range shifts under climate change most often rely on ecological niche models, in which characterizations of climate suitability are highly contingent on the species range data used. If ranges are far from equilibrium under current environmental conditions, for instance owing to local extinctions in otherwise suitable areas, modelled environmental suitability can be truncated, leading to biased estimates of the effects of climate change. Here we examine the impact of such biases on estimated risks from climate change by comparing models of the distribution of North American mammals based on current ranges with ranges accounting for historical information on species ranges. We find that estimated future diversity, almost everywhere, except in coastal Alaska, is drastically underestimated unless the full historical distribution of the species is included in the models. Consequently forecasts of climate change impacts on biodiversity for many clades are unlikely to be reliable without acknowledging anthropogenic influences on contemporary ranges.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Improvement of fossil prediction for climatic hind-casting when incorporating historical records.
Fig. 2: Effect of the incorporation of historical records for predicted future diversity.

References

  1. Pereira, H. M. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501 (2010).

    Article  CAS  Google Scholar 

  2. Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. The ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).

    Article  CAS  Google Scholar 

  3. Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).

    Article  CAS  Google Scholar 

  4. Heikkinen, R. K. et al. Methods and uncertainties in bioclimatic modelling under climate change. Prog. Phys. Geog. 30, 751–777 (2006).

    Article  Google Scholar 

  5. Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C. & Mace, G. M. Beyond predictions: biodiversity conservation in a changing climate. Science 332, 53–58 (2011).

    Article  CAS  Google Scholar 

  6. Araújo, M. B. & Rahbek, C. Ecology. How does climate change affect biodiversity? Science 313, 1396–1397 (2006).

    Article  Google Scholar 

  7. Thuiller, W., Brotons, L., Araújo, M. B. & Lavorel, S. Effects of restricting environmental range of data to project current and future species distributions. Ecography 27, 165–172 (2004).

    Article  Google Scholar 

  8. Barbet-Massin, M., Thuiller, W. & Jiguet, F. How much do we overestimate future local extinction rates when restricting the range of occurrence data in climate suitability models? Ecography 33, 878–886 (2010).

    Article  Google Scholar 

  9. Laliberte, A. A. & Ripple, W. J. Range contractions of North American carnivores and ungulates. Bioscience 54, 123–138 (2004).

    Article  Google Scholar 

  10. Faurby, S. & Svenning, J. C. Historic and prehistoric human-driven extinctions have reshaped global mammal diversity patterns. Divers. Distrib. 21, 1155–1166 (2015).

    Article  Google Scholar 

  11. Werdelin, L. & Lewis, M. E. Temporal change in functional richness and evenness in the eastern African Plio-Pleistocene carnivoran guild. PLoS ONE 8, e57944 (2013).

    Article  CAS  Google Scholar 

  12. Di Marco, M. & Santini, L. Human pressures predict species’ geographic range size better than biological traits. Glob. Change Biol. 21, 2169–2178 (2015).

    Article  Google Scholar 

  13. Faurby, S. & Araújo, M. B. Anthropogenic impacts weaken Bergmann’s rule. Ecography 40, 683–684 (2017).

    Article  Google Scholar 

  14. Sandom, C., Faurby, S., Sandel, B. & Svenning, J. C. Global late Quaternary megafauna extinctions linked to humans, not climate change. Proc. R. Soc. B 281, 20133254 (2014).

    Article  Google Scholar 

  15. Bartlett, L. J. et al. Robustness despite uncertainty: regional climate data reveal the dominant role of humans in explaining global extinctions of Late Quaternary megafauna. Ecography 39, 152–161 (2016).

    Article  Google Scholar 

  16. Diamond, J. Collapse: How Societies Choose to Fail or Succeed (Penguin Books, London, UK, 2005).

  17. Cheaib, A. et al. Climate change impacts on tree ranges: model intercomparison facilitates understanding and quantification of uncertainty. Ecol. Lett. 15, 533–544 (2012).

    Article  Google Scholar 

  18. Ay, J. S., Guillemot, J., Martin-StPaul, N., Doyen, L. & Leadley, P. The economics of land use reveals a selection bias in tree species distribution models. Glob. Ecol. Biogeogr. 26, 65–77 (2017).

    Article  Google Scholar 

  19. Pacifici, M. et al. Species’ traits influenced their response to recent climate change. Nat. Clim. Change 7, 205–208 (2017).

    Article  Google Scholar 

  20. Araújo, M. B., Alagador, D., Cabeza, M., Nogués-Bravo, D. & Thuiller, W. Climate change threatens European conservation areas. Ecol. Lett. 14, 484–492 (2011).

    Article  Google Scholar 

  21. Burns, C. E., Johnston, K. M. & Schmitz, O. J. Global climate change and mammalian species diversity in U.S. national parks. Proc. Natl Acad. Sci. USA 100, 11474–11477 (2003).

    Article  CAS  Google Scholar 

  22. Wetzel, F. T., Kissling, W. D., Beissmann, H. & Penn, D. J. Future climate change driven sea-level rise: secondary consequences from human displacement for island biodiversity. Glob. Change Biol. 18, 2707–2719 (2012).

    Article  Google Scholar 

  23. Nogués-Bravo, D. et al. Amplified plant turnover in response to climate change forecast by Late Quaternary records. Nat. Clim. Change 6, 1115–1119 (2016).

    Article  Google Scholar 

  24. Sandom, C. J., Ejrnæs, R., Hansen, M. D. D. & Svenning, J. C. High herbivore density associated with vegetation diversity in interglacial ecosystems. Proc. Natl Acad. Sci. USA 111, 4162–4167 (2014).

    Article  CAS  Google Scholar 

  25. Daskin, J. H., Stalmans, M. & Pringle, R. M. Ecological legacies of civil war: 35-year increase in savanna tree cover following wholesale large-mammal declines. J. Ecol. 104, 79–89 (2016).

    Article  Google Scholar 

  26. Doughty, C. E., Faurby, S. & Svenning, J. C. Did megafauna extinctions affect savanna woody cover in South America? Ecography 39, 213–222 (2016).

    Article  Google Scholar 

  27. Lomolino, M. V. & Channell, R. Splendid isolation: patterns of geographic range collapse in endangered mammals. J. Mammal. 76, 335–347 (1995).

    Article  Google Scholar 

  28. Hanski, I. Dynamics of regional distribution: the core and satellite species hypothesis. Oikos 38, 210–221 (1982).

    Article  Google Scholar 

  29. Nogués-Bravo, D. Predicting the past distribution of species climatic niches. Glob. Ecol. Biogeogr. 18, 521–531 (2009).

    Article  Google Scholar 

  30. Beale, C. M., Brewer, M. J. & Lennon, J. L. A new statistical framework for the quantification of covariate associations with species distributions. Methods Ecol. Evol. 5, 421–432 (2014).

    Article  Google Scholar 

  31. Thuiller, W., Georges, D. & Engler, R. biomod2: Ensemble Platform for Species Distribution Modeling. R package Version 2 (2016); https://cran.r-project.org/web/packages/biomod2/

  32. Garcia, R. A., Burgess, N. D., Cabeza, M., Rahbek, C. & Araújo, M. B. Exploring consensus in 21st century projections of climatically suitable areas for African vertebrates. Glob. Change Biol. 18, 1253–1269 (2012).

    Article  Google Scholar 

  33. Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).

    Article  Google Scholar 

  34. Araújo, M. B., Whittaker, R. J., Ladle, R. J. & Erhard, M. Reducing uncertainty in extinction risk from climate change. Glob. Ecol. Biogeogr. 14, 529–538 (2005).

    Article  Google Scholar 

  35. Faurby, S. & Svenning, J. C. Resurrection of the island rule: human-driven extinctions have obscured a basic evolutionary pattern. Am. Nat. 187, 812–820 (2016).

    Article  Google Scholar 

  36. The IUCN Red List of Threatened Species (IUCN, accessed 1 June 2015); http://www.iucnredlist.org

  37. Hall, E. R. The Mammals of North America (Wiley, New York, USA, 1981).

  38. Goring, S. et al. Neotoma: a programmatic interface to the Neotoma paleoecological database. Open Quat. 1, 2 (2015).

  39. Faurby, S. & Svenning, J. C. A species-level phylogeny for all extant and Late Quaternary extinct mammals using a novel heuristic-hierarchical Bayesian approach. Mol. Phylogenet. Evol. 84, 14–26 (2015).

    Article  Google Scholar 

  40. Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

    Article  Google Scholar 

  41. Worldclim Version 1.4 (Worldclim); http://www.worldclim.org

  42. Batra, P. O. An Assessment of Interactively Coupled Paleoclimate-Vegetation Models. PhD thesis, Pennsylvania State Univ. (2003).

  43. Otto-Bliesner, B. L., Marshall, S. J., Overpeck, J. T., Miller, G. H. & Hu, A. Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science 311, 1751–1753 (2006).

    Article  CAS  Google Scholar 

  44. University of Copenhagen Data, Icesamples and Software (Univ. Copenhagen, 2016); http://www.iceandclimate.nbi.ku.dk/data/

  45. Andersen, K. A. et al. The Greenland ice core chronology 2005, 15–42 ka. Part 1: constructing the time scale. Quat. Sci. Rev. 25, 3246–3257 (2006).

    Article  Google Scholar 

  46. Rasmussen, S. O. et al. A new Greenland ice core chronology for the last glacial termination. J. Geophys. Res. Atmos. 111, D06102 (2006).

    Article  Google Scholar 

  47. Vinther, B. M. et al. A synchronized dating of three Greenland ice cores throughout the Holocene. J. Geophys. Res. Atmos. 111, D13102 (2006).

    Article  Google Scholar 

  48. Svensson, A. et al. A 60,000 year Greenland stratigraphic ice core chronology. Clim. Past. 4, 47–57 (2008).

    Article  Google Scholar 

  49. Wolff, E. W., Chappellaz, J., Blunier, T., Rasmussen, S. O. & Svensson, A. Millennial-scale variability during the last glacial: the ice core record. Quat. Sci. Rev. 29, 2828–2838 (2010).

    Article  Google Scholar 

  50. Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241 (2011).

    Article  CAS  Google Scholar 

  51. Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol. Evol. 3, 327–338 (2012).

    Article  Google Scholar 

  52. Franklin, J. Mapping Species Distributions: Spatial Inference and Prediction (Cambridge Univ. Press, Cambridge, UK, 2010).

  53. Diniz-Filho, J. A. et al. Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate changes. Ecography 32, 897–906 (2009).

    Article  Google Scholar 

  54. Araújo, M. B., Thuiller, W. & Yoccoz, N. G. Reopening the climate envelope reveals macroscale associations with climate in European birds. Proc. Natl Acad. Sci. USA 106, E45–E46 (2009).

    Article  Google Scholar 

  55. Moreno-Amat, E. et al. Impact of model complexity on cross-temporal transferability in Maxent species distribution models: An assessment using paleobotanical data. Ecol. Modell. 312, 308–317 (2015).

Download references

Acknowledgements

S.F. was supported by the Danish Natural Science Research Council #4090-00227 and vetenskabsrådet (The Swedish research council) #2017-03862. M.B.A. acknowledges support from AAG-MAA/3764/2014 and the Spanish Research Council (CSIC) for his work and support from the Danish Natural Science Research Council to the Centre for Macroecology, Evolution and Climate (CMEC). We thank C. Bacon for helpful comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.F. and M.B.A. designed research; S.F. performed research; S.F. analysed data; S.F. and M.B.A. wrote the paper.

Corresponding author

Correspondence to Søren Faurby.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–7 and Supplementary Tables 1–5

Supplementary Data 1

The file lists all records from GBIF which we did not include and all records where our taxonomical assignment was different to the original taxonomy from GBIF

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faurby, S., Araújo, M.B. Anthropogenic range contractions bias species climate change forecasts. Nature Clim Change 8, 252–256 (2018). https://doi.org/10.1038/s41558-018-0089-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-018-0089-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing