Integrating human behaviour dynamics into flood disaster risk assessment

Abstract

The behaviour of individuals, businesses, and government entities before, during, and immediately after a disaster can dramatically affect the impact and recovery time. However, existing risk-assessment methods rarely include this critical factor. In this Perspective, we show why this is a concern, and demonstrate that although initial efforts have inevitably represented human behaviour in limited terms, innovations in flood-risk assessment that integrate societal behaviour and behavioural adaptation dynamics into such quantifications may lead to more accurate characterization of risks and improved assessment of the effectiveness of risk-management strategies and investments. Such multidisciplinary approaches can inform flood-risk management policy development.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Extended risk assessment framework including behavioural factors and disaster risk reduction.
Fig. 2: Trends in flood risk influenced by events and human behaviour.

References

  1. 1.

    Natural Catastrophe Losses at their Highest for Four Years (Munich RE, 2017).

  2. 2.

    Jongman, B., Ward, P. J. & Aerts, J. C. J. H. Global exposure to river and coastal flooding: Long term trends and changes. Global Environ. Change 22, 823–835 (2012).

    Article  Google Scholar 

  3. 3.

    Winsemius, H. C. et al. Global drivers of future river flood risk. Nat. Clim. Change 6, 381–385 (2015).

    Article  Google Scholar 

  4. 4.

    Aerts, J. C. J. H. & Botzen, W. J. Managing exposure to flooding in New York City. Nat. Clim. Change 2, 377 (2012).

    Article  Google Scholar 

  5. 5.

    Mechler, R. & Schinko, T. Identifying the policy space for loss and damage. Science 354, 290–292 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    Michel-Kerjan, E. We must build resilience in our communities. Nature 524, 389 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    Mysiak, J., Surminski, S., Thieken, A., Mechler, R. & Aerts, J. C. J. H. Sendai framework for disaster risk reduction — success or warning sign for Paris? Nat. Hazards Earth Syst. Sci. 16, 2189–2193 (2016).

    Article  Google Scholar 

  8. 8.

    Hall, J. W., Brown, S., Nicholls, R. J., Pidgeon, N. & Watson, R. Proportionate adaptation. Nat. Clim. Change 2, 833–834 (2012).

    Article  Google Scholar 

  9. 9.

    Kron, W. Flood Risk = Hazard · Values · Vulnerability. Water Int. 30, 58–68 (2005).

    Article  Google Scholar 

  10. 10.

    Merz, B., Hall, J. W., Disse, M. & Schumann, A. Fluvial flood risk management in a changing world. Hydrol. Earth Sys. Sci. 10, 509–527 (2010).

    Google Scholar 

  11. 11.

    Aerts, C. J. H. J. et al. Evaluating flood resilience strategies for coastal megacities. Science 344, 473–475 (2014).

    Article  Google Scholar 

  12. 12.

    Thieken, A. H., Cammerer, H., Dobler, C., Lammel, J. & Schorberl, F. Estimating changes in flood risks and benefits of non-structural adaptation strategies: a case study from Tyrol, Austria. Mitigation Adaptation Strat. Global Change 21, 343–376 (2014).

    Article  Google Scholar 

  13. 13.

    Kleindorfer, P., Kunreuther, H. & Schoemaker, P. Decision Sciences: An Integrative Perspective (Cambridge Univ. Press, 1993).

  14. 14.

    Slovic, P. The Perception of Risk (Earthscan, London, 2000).

    Google Scholar 

  15. 15.

    Tierney, K. Social Roots of Risk: Producing Disaster, Promoting Resilience (Stanford Univ. Press, Palo Alto, 2014).

    Google Scholar 

  16. 16.

    Wisner, B., Blaikie, P., Cannon, T. & Davis, I. At Risk: Natural Hazards, People’s Vulnerability and Disasters 2nd edn (Routledge, London, 2004).

    Google Scholar 

  17. 17.

    Birkmann, J. Measuring Vulnerability to Natural Hazards: Towards Disaster Resilient Societies (United Nations Univ., Tokyo, New York, Paris, 2013).

    Google Scholar 

  18. 18.

    IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) (Cambridge Univ. Press, Cambridge, 2012).

  19. 19.

    Bubeck, P., Botzen, W. J. W., Kreibich, H. & Aerts, J. C. J. H. Long-term development and effectiveness of private flood mitigation measures: An analysis for the German part of the river Rhine. Nat. Haz. Earth Sys. Sci. 12, 3507–3518 (2012).This article shows the effectiveness of household agents contributing to flood risk reduction.

  20. 20.

    Botzen, W. J. W., Aerts, J. C. J. H. & van den Bergh, J. C. J. M. Dependence of flood-risk perceptions on socio-economic and objective risk factors. Water Res. Research 45, 1–15 (2009).

    Article  Google Scholar 

  21. 21.

    Kellens, W., Terpstra, T. & De Maeyer, P. Perception and communication of flood risks: A systematic review of empirical research. Risk Anal. 33, 24–49 (2013).

    Article  Google Scholar 

  22. 22.

    Tversky, A. & Kahneman, D. Availability: A heuristic for judging frequency and probability. Cognitive Psychol. 5, 207–232 (1973).

    Article  Google Scholar 

  23. 23.

    Kunreuther, H. The role of insurance in reducing losses from extreme events: The need for public–private partnerships. Geneva Papers 40, 741–762 (2015).

    Google Scholar 

  24. 24.

    Kahneman, D. Thinking, Fast and Slow (Farrar, Straus and Giroux, 2011).

  25. 25.

    Grossi, P. & Kunreuther, H. Catastrophe Modeling: A New Approach to Managing Risk (Springer, 2005).

  26. 26.

    Jonkman, S. N., Vrijling, J. K. & Vrouwenvelder, A. C. W. M. Methods for the estimation of loss of life due to floods: A literature review and a proposal for a new method. Nat. Hazards 46, 353–389 (2008).

    Article  Google Scholar 

  27. 27.

    Merz, B., Kreibich, H., Schwarze, R. & Thieken, A. Assessment of economic flood damage. Nat. Hazards Earth Syst. Sci. 10, 1697–1724 (2010).

    Article  Google Scholar 

  28. 28.

    Kreibich., H., Botto, A., Merz, B. & Schroter, K. Probabilistic, multivariable flood loss modeling on the mesoscale with BT-FLEMO. Risk Anal. 37, 774–787 (2016).

    Article  Google Scholar 

  29. 29.

    Merz, B. et al. Floods and climate: emerging perspectives for flood risk assessment and management. Nat. Hazards Earth Syst. 14, 1921–1942 (2014).

    Article  Google Scholar 

  30. 30.

    Ward, P. J. et al. Usefulness and limitations of global flood risk models. Nat. Clim. Change 5, 712–715 (2015).

    Article  Google Scholar 

  31. 31.

    Michel-Kerjan, E. & Kunreuther, H. Redesigning flood insurance. Science 333, 408–409 (2011).

    CAS  Article  Google Scholar 

  32. 32.

    Turner, B. L. et al. A framework for vulnerability analysis in sustainability science. Proc. Natl Acad. Sci. USA 100, 8057–8059 (2003).

    Google Scholar 

  33. 33.

    Cutter, S. L., Boruff, B. J. & Shirley, W. L. Social vulnerability to environmental hazards. Social Sci. Q 84, 242–261 (2003).

    Article  Google Scholar 

  34. 34.

    Adger, W. N. Vulnerability. Glob. Environ. Change 16, 268–281 (2006).

    Article  Google Scholar 

  35. 35.

    Cutter, S. L., Boruff, B. J. & Shirley, W. L. Social vulnerability to environmental hazards. Soc. Sci. Q. 84, 242–261 (2003).This paper demonstrates the importance of social vulnerability in natural hazard management.

  36. 36.

    Rufat, S., Tate, E., Burton, C. G. & Maroof, A. S. Social vulnerability to floods: review of case studies and implications for measurement. Int. J. Disaster. Risk 14, 470–486 (2015).

    Article  Google Scholar 

  37. 37.

    Emrich, C. T. & Cutter, S. L. Social vulnerability to climate-sensitive hazards in the southern United States. Weather Clim. Soc. 3, 193–208 (2011).

    Article  Google Scholar 

  38. 38.

    Tate, E. Uncertainty analysis for a social vulnerability index. Ann. Assoc. Am. Geogr. 103, 526–543 (2013).

    Article  Google Scholar 

  39. 39.

    Carr, E. R., Daniel, A. A., De la Poterie, T., Suarez, P. & Koelle, B. Vulnerability assessments, identity and spatial scale challenges in disaster–risk reduction. J. Disaster Risk Studies 7, 1–17 (2015).

    Google Scholar 

  40. 40.

    Masozera, M., Bailey, M. & Kerchner, C. Distribution of impacts of natural disasters across income groups: A case study of New Orleans. Ecol. Econ. 63, 299–306 (2007).

    Article  Google Scholar 

  41. 41.

    Downey, L. Environmental injustice: is race or income a better predictor? Soc. Sci. Q. 79, 766–778 (1998).

    Google Scholar 

  42. 42.

    Brouwer, R., Akter, S., Brander, L. & Haque, E. Socioeconomic vulnerability and adaptation to environmental risk: a case study of climate change and flooding in Bangladesh. Risk Anal. 27, 313–326 (2007).

    Article  Google Scholar 

  43. 43.

    Sultana, F. Living in hazardous waterscapes: gendered vulnerabilities and experiences of floods and disasters. Environ. Hazards 9, 43–53 (2010).

    Article  Google Scholar 

  44. 44.

    Botzen, W. J. W., Michel-Kerjan, E., Kunreuther, H., De Moel, H. & Aerts, J. C. J. H. Political affiliation affects adaptation to climate risks: Evidence from New York City. Clim. Change Lett. 138, 353–360 (2016).

    Article  Google Scholar 

  45. 45.

    Schmidtlein, M. C., Deutsch, R. C., Piegorsch, W. W. & Cutter, S. L. A sensitivity analysis of the social vulnerability index. Risk Anal. 28, 1099–1114 (2008).

    Article  Google Scholar 

  46. 46.

    Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760 (2008).

    CAS  Article  Google Scholar 

  47. 47.

    Berkhout, F., Hertin, J. & Jordan, A. Socio-economic futures in climate change impact assessment: using scenarios as ‘learning machines’. Global Environ. Change 12, 83–95 (2002).

    Article  Google Scholar 

  48. 48.

    Hall, J. W. et al. Quantified scenarios analysis of drivers and impacts of changing flood risk in England and Wales: 2030–2100. Environ. Hazards 5, 51–65 (2003).

    Article  Google Scholar 

  49. 49.

    Folke, C. Resilience: the emergence of a perspective for social–ecological system analyses. Global Environ. Change 16, 253–267 (2006).

    Article  Google Scholar 

  50. 50.

    Di Baldassarre, G. et al. Debates — Perspectives on socio-hydrology: Capturing feedbacks between physical and social processes. Water Resour. Res. 51, 4770–4781 (2015).This article shows the importance of integrating societal activities with hydrological processes in quantitative flood simulations.

  51. 51.

    Dawson, R. J., Peppe, R. & Wang, M. An agent-based model for risk-based flood incident management. Nat. Hazards 59, 167–189 (2011).

    Article  Google Scholar 

  52. 52.

    Surminski, S. et al. in UK Climate Change Risk Assessment Evidence Report. Ch. 6 (Committee on Climate Change, 2016).

  53. 53.

    Merz, B., Vorogushyn, S., Lall, U., Viglione, A. & Blöschl, G. Charting unknown waters — On the role of surprise in flood risk assessment and management. Water Resources Res. 51, 6399–6416 (2015).

    Article  Google Scholar 

  54. 54.

    Hall, J. W., Berkhout, F. & Douglas, R. Responding to adaptation emergencies. Nat. Clim. Change 5, 6–7 (2015).

    Article  Google Scholar 

  55. 55.

    Adger, W. N., Quinn, T., Lorenzoni, I., Murphy, C. & Sweeney, J. Changing social contracts in climate change adaptation. Nat. Clim. Change 3, 330–333 (2013).

    Article  Google Scholar 

  56. 56.

    Palmer, P. I. & Smith, M. J. Model human adaptation to climate change. Nature 512, 365 (2014).

    CAS  Article  Google Scholar 

  57. 57.

    Rogers, R. W. in Social Psycho physiology (eds Cacioppo, J. & Petty, R.) Ch. 6 (Guilford Press, 1983).

  58. 58.

    Poussin, J. K., Botzen, W. J. W. & Aerts, J. C. J. H. Effectiveness of flood damage mitigation measures: Empirical evidence from French flood disasters. Global Environ. Change 31, 74–84 (2015).

    Article  Google Scholar 

  59. 59.

    Von Neumann, J. & Morgenstern, O. Theory of Games and Economic Behavior (Princeton Univ. Press, 1947).

  60. 60.

    Kahneman, D. & Tversky, A. Prospect theory: An analysis of decision under risk. Econometrica 47, 263–291 (1979).This article demonstrates that boundedly rational behaviour under risk deviates from standard rational behaviour.

  61. 61.

    Botzen, W. J. W. & van den Bergh, J. C. J. M. Bounded rationality, climate risks and insurance: Is there a market for natural disasters? Land Econ. 85, 266–279 (2009).

    Article  Google Scholar 

  62. 62.

    Hudson, P., Botzen, W. J. W., Feyen, L. & Aerts, J. C. J. H. Incentivising flood risk adaptation through risk based insurance premiums: trade-offs between affordability and risk reduction. Ecol. Econ. 125, 1–13 (2016).

    Article  Google Scholar 

  63. 63.

    Tversky, A. & Kahneman, D. Advances in prospect theory: Cumulative representation of uncertainty. J. Risk Uncertainty 5, 297–323 (1992).

    Article  Google Scholar 

  64. 64.

    Viscusi, W. K. Prospective reference theory: Toward an explanation of the paradoxes. J. Risk Uncertainty 2, 235–264 (1989).

  65. 65.

    Rai, V. & Henry, D. A. Agent-based modelling of consumer energy choices. Nat. Clim. Change 6, 556–562 (2016).

    Article  Google Scholar 

  66. 66.

    Burton, C. & Cutter, S. L. Levee failures and social vulnerability in the Sacramento-San Joaquin delta area, California. Nat. Hazards Rev. 9, 136–149 (2008).

    Article  Google Scholar 

  67. 67.

    Cutter, S. L., Emrich, C., Morath, D. & Dunning, C. M. Integrating social vulnerability into federal flood risk management planning. J. Flood Risk Management 6, 332–344 (2013).

    Article  Google Scholar 

  68. 68.

    Maldonado, A., Collins, T. W., Grineski, S. E. & Chakraborty, J. Exposure to flood hazards in Miami and Houston: Are Hispanic immigrants at greater risk than other social groups? Int. J. Environ. Res. Public Health 13, 775 (2016).

    Article  Google Scholar 

  69. 69.

    Fielding, J. L. Flood risk and inequalities between ethnic groups in the floodplains of England and Wales. Disasters 42, 101–123 (2017).

    Article  Google Scholar 

  70. 70.

    Lazrus, H., Morss, R. E., Demuth, J. L., Lazo, J. K. & Bostrom, A. “Know what to do if you encounter a flash flood”: Mental models analysis for improving flash flood risk communication and public decision making. Risk Anal. 36, 411–427 (2016).

    Article  Google Scholar 

  71. 71.

    Cutter, S. L., Emrich, C. T., Gall, M. & Reeves, R. Flash flood risk and the paradox of urban development. Nat. Hazard Rev. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000268 (2018).

  72. 72.

    Di Baldassarre, G. et al. Socio-hydrology: conceptualising human-flood interactions. Hydrol. Earth Syst. Sci. 17, 3295–3303 (2013).

    Article  Google Scholar 

  73. 73.

    Viglione, A. et al. Insights from socio-hydrology modelling on dealing with flood risk — roles of collective memory, risk-taking attitude and trust. J. Hydrol. 518, 71–82 (2014).

    Article  Google Scholar 

  74. 74.

    Grames, J., Prskawetz, A., Grass, D. & Bloschl, G. Modelling the interaction between flooding events and economic growth. Proc. Int. Assoc. Hydrol. Sci. 369, 3–6 (2015).

    Google Scholar 

  75. 75.

    Dadson, S. et al. Water security, risk and economic growth: lessons from a dynamical systems model. Water Resour. Res. 53, 6425–6438 (2017).

    Article  Google Scholar 

  76. 76.

    Sivapalan, M., Savenije, H. H. G. & Blöschl, G. Socio-hydrology: A new science of people and water. Hydrol. Proc. 26, 1270–1276 (2012).

    Article  Google Scholar 

  77. 77.

    Haer, T., Botzen., W. J. & Aerts, J. C. J. H Integrating household mitigation behaviour in flood risk analysis: an agent based model approach. Risk Anal. 12740, 1–15 (2016).This research uses an agent-based model to demonstrate that without considering behavioural aspects, future risk is overestimated by a factor of two.

  78. 78.

    Jenkins, K., Surminski, S., Hall, J. & Crick, F. Assessing surface water flood risk and management strategies under future climate change: Insights from an Agent-Based Model. Sci. Total Environ. 595, 159–168 (2017).

    CAS  Article  Google Scholar 

  79. 79.

    Jenkins, K., Dubbelboer, J., Nikolic, I. & Hall, J. W. An Agent-Based Model of flood risk and insurance. J. Artificial Societies Soc. Simulation https://doi.org/10.18564/jasss.3135 (in the press).

  80. 80.

    Haer, T., Botzen, W. & Aerts, J. C. J. H. The effectiveness of flood risk communication strategies and the influence of social networks — Insights from an agent-based model. Environ. Science Pol. 60, 44–42 (2016).

    Article  Google Scholar 

  81. 81.

    Waldrop, M. M. Complexity: the Emerging Science at the Edge of Order and Chaos (Simon & Schuster, 1993).

  82. 82.

    Clarke, K. C. in Handbook of Regional Science (eds Fischer, M. M. & Nijkamp, P.) Ch. 62 (Springer, 2014).

  83. 83.

    Kreibich, H. et al. Adaptation to flood risk — results of international paired flood event studies. Earth’s Future 5, 953–965 (2017).

    Article  Google Scholar 

  84. 84.

    Wind, H. G., Nierop, T. M., de Blois, C. J. & Kok, J. L. Analysis of flood damages from the 1993 and 1995 Meuse floods. Water Resourses Res. 35, 3459–3465 (1999).

    Article  Google Scholar 

  85. 85.

    Pelling, M. The political ecology of flood hazard in urban Guyana. Geoforum 30, 249–261 (1999).

    Article  Google Scholar 

  86. 86.

    Bubeck, P., Botzen, W. J. W. & Aerts, J. C. J. H. A review of risk perceptions and other factors that influence flood mitigation behavior. Risk Anal. 32, 1481–1495 (2012).

    CAS  Article  Google Scholar 

  87. 87.

    Koerth, J., Vafeidis, A. T. & Hinkel, J. Household-level coastal adaptation and its drivers: A systematic case study review. Risk Anal. 37, 629–646 (2017).

    Article  Google Scholar 

  88. 88.

    Mechler, R. et al. Managing unnatural disaster risk from climate extremes. Nat. Clim. Change 4, 235–237 (2014).

    Article  Google Scholar 

  89. 89.

    Cutter, S. L. & Gall, M. Sendai targets at risk. Nat. Clim. Change 5, 707–709 (2015).

    Article  Google Scholar 

  90. 90.

    Kunreuther, H., Pauly, M. & McMorrow, S. Insurance and Behavioral Economics: Improving Decisions in the Most Misunderstood Industry (Cambridge Univ. Press, 2013).

  91. 91.

    Botzen, W. J. W. & van den Bergh, J. C. J. M. Risk attitudes to low-probability climate change risks: WTP for flood insurance. J. Econ. Behavior Org. 82, 151–166 (2012).

    Article  Google Scholar 

  92. 92.

    Surminski, S. & Lopez, A. Concept of loss and damage of climate change — a new challenge for climate decision-making? A climate science perspective. Clim. Dev. 7, 267–277 (2014).

    Article  Google Scholar 

  93. 93.

    Jongman, B. et al. Declining vulnerability to river floods and the global benefits of adaptation. Proc. Natl Acad. Sci. USA 1073, 2271–2280 (2015).

    Article  Google Scholar 

  94. 94.

    Kunreuther, H. C. & Michel-Kerjan, E. O. At War with the Weather (MIT Press, 2011).

  95. 95.

    Kunreuther, H. C. Mitigating disaster losses through insurance. J. Risk Uncertainty 12, 171–187 (1996).

    Article  Google Scholar 

  96. 96.

    ASC UK Climate Change Risk Assessment 2017 Synthesis Report: Priorities for the Next Five Years (eds Humphrey, K. et al.) (CCC, London, 2016).

  97. 97.

    Aerts, J. C. J. H. et al. in Novel Multi-Sector Partnerships in Disaster Risk Management (eds Aerts, J. & Mysiak, J.) Ch 2, 31–48 (VU Univ. Press, 2016).

Download references

Acknowledgements

Many thanks to K. Clarke, S. Sweeney, D. Lopez-Carr, C. Funk and the Climate Hazard Group for their support (Department of Geography and Broome Center for Demography, University of California, Santa Barbara. The research was financially supported by NWO Vici grant no. 453-13-006, NWO Vidi grant no. 452.14.005; EU H2020 grant agreement no. 730482; and the UK Economic and Social Research Council (ESRC) through the Centre for Climate Change Economics and Policy.

Author information

Affiliations

Authors

Contributions

All authors contributed ideas and edited the manuscript. In addition, J.A and W.B. conceptually developed the figures. J.A, W.B., K.C., J.H., B.M., J.M., S.S., E.M-K, S.C., H.K., wrote the manuscript.

Corresponding author

Correspondence to J. C. J. H. Aerts.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aerts, J.C.J.H., Botzen, W.J., Clarke, K.C. et al. Integrating human behaviour dynamics into flood disaster risk assessment. Nature Clim Change 8, 193–199 (2018). https://doi.org/10.1038/s41558-018-0085-1

Download citation

Further reading