Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A projected decrease in lightning under climate change


Lightning strongly influences atmospheric chemistry1,2,3, and impacts the frequency of natural wildfires4. Most previous studies project an increase in global lightning with climate change over the coming century1,5,6,7, but these typically use parameterizations of lightning that neglect cloud ice fluxes, a component generally considered to be fundamental to thunderstorm charging8. As such, the response of lightning to climate change is uncertain. Here, we compare lightning projections for 2100 using two parameterizations: the widely used cloud-top height (CTH) approach9, and a new upward cloud ice flux (IFLUX) approach10 that overcomes previous limitations. In contrast to the previously reported global increase in lightning based on CTH, we find a 15% decrease in total lightning flash rate with IFLUX in 2100 under a strong global warming scenario. Differences are largest in the tropics, where most lightning occurs, with implications for the estimation of future changes in tropospheric ozone and methane, as well as differences in their radiative forcings. These results suggest that lightning schemes more closely related to cloud ice and microphysical processes are needed to robustly estimate future changes in lightning and atmospheric composition.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Changes in lightning flash rate between the 2000s and 2100s using two lightning schemes.
Fig. 2: Mean vertical distributions of meteorological variables in the 2000s and 2100s, over tropical land.
Fig. 3: Estimated ozone, methane and the net radiative forcing between 2000 and 2100 resulting from climate change and LNOx emissions.


  1. 1.

    Schumann, U. & Huntrieser, H. The global lightning-induced nitrogen oxides source. Atmos. Chem. Phys. 7, 3823–3907 (2007).

    CAS  Article  Google Scholar 

  2. 2.

    Murray, L. T. Lightning NOx and impacts on air quality. Curr. Pollut. Rep. 2, 115–133 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    Tost, H. Chemistry-climate interactions of aerosol nitrate from lightning. Atmos. Chem. Phys. 17, 1125–1142 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    Krause, A., Kloster, S., Wilkenskjeld, S. & Paeth, H. The sensitivity of global wildfires to simulated past, present, and future lightning frequency. J. Geophys. Res. Biogeosci. 119, 312–322 (2014).

    Article  Google Scholar 

  5. 5.

    Price, C. & Rind, D. Possible implications of global climate change on global lightning distributions and frequencies. J. Geophys. Res. 99, 10823–10831 (1994).

    Article  Google Scholar 

  6. 6.

    Clark, S. K., Ward, D. S. & Mahowald, N. M. Parameterization-based uncertainty in future lightning flash density. Geophys. Res. Lett. 44, 2893–2901 (2017).

    Article  Google Scholar 

  7. 7.

    Banerjee, A. et al. Lightning NOx, a key chemistry–climate interaction: impacts of future climate change and consequences for tropospheric oxidising capacity. Atmos. Chem. Phys. 14, 9871–9881 (2014).

    Article  Google Scholar 

  8. 8.

    Reynolds, S. E., Brook, M. & Gourley, M. F. Thunderstorm charge separation. J. Meteorol. 14, 426–436 (1957).

    Article  Google Scholar 

  9. 9.

    Price, C. & Rind, D. A simple lightning parameterization for calculating global lightning distributions. J. Geophys. Res. 97, 9919–9933 (1992).

    Article  Google Scholar 

  10. 10.

    Finney, D. L. et al. Using cloud ice flux to parametrise large-scale lightning. Atmos. Chem. Phys. 14, 12665–12682 (2014).

    CAS  Article  Google Scholar 

  11. 11.

    Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (IPCC, Cambridge Univ. Press, 2013).

  12. 12.

    Latham, J., Petersen, W. A., Deierling, W. & Christian, H. J. Field identification of a unique globally dominant mechanism of thunderstorm electrification. Q. J. R. Meteorol. Soc. 133, 1453–1457 (2007).

    Article  Google Scholar 

  13. 13.

    Zeng, G., Pyle, J. A. & Young, P. J. Impact of climate change on tropospheric ozone and its global budgets. Atmos. Chem. Phys. 8, 369–387 (2008).

    CAS  Article  Google Scholar 

  14. 14.

    Jiang, H. & Liao, H. Projected changes in NOx emissions from lightning as a result of 2000-2050 climate change. Atmos. Ocean. Sci. Lett. 6, 284–289 (2013).

    Article  Google Scholar 

  15. 15.

    Williams, E. R. Lightning and climate: A review. Atmos. Res. 76, 272–287 (2005).

    Article  Google Scholar 

  16. 16.

    Price, C. G. Lightning applications in weather and climate research. Surv. Geophys. (2013).

    Google Scholar 

  17. 17.

    Allen, D. J. & Pickering, K. E. Evaluation of lightning flash rate parameterizations for use in a global chemical transport model. J. Geophys. Res. Atmos. 107, 15–21 (2002).

    Article  Google Scholar 

  18. 18.

    Finney, D.L., Doherty, R. M., Wild, O., Young, P. J. & Butler, A. Response of lightning NOx emissions andozone production to climate change: Insights from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Geophys. Res. Lett 43, 5492–5500 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    Tost, H., Jöckel, P. & Lelieveld, J. Lightning and convection parameterisations - uncertainties in global modelling. Atmos. Chem. Phys. 7, 4553–4568 (2007).

    CAS  Article  Google Scholar 

  20. 20.

    Jacobson, M. Z. & Streets, D. G. Influence of future anthropogenic emissions on climate, natural emissions, and air quality. J. Geophys. Res. 114, D08118 (2009).

    Google Scholar 

  21. 21.

    Finney, D. L., Doherty, R. M., Wild, O. & Abraham, N. L. The impact of lightning on tropospheric ozone chemistry using a new global lightning parametrisation. Atmos. Chem. Phys. 16, 7507–7522 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    van Vuuren, D. P. et al. The representative concentration pathways: An overview. Clim. Change 109, 5–31 (2011).

    Article  Google Scholar 

  23. 23.

    Romps, D. M., Seeley, J. T., Vollaro, D. & Molinari, J. Projected increase in lightning strikes in the United States due to global warming. Science 346, 851–854 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    Satori, G., Williams, E. & Lemperger, I. Variability of global lightning activity on the ENSO time scale. Atmos. Res. 91, 500–507 (2009).

    Article  Google Scholar 

  25. 25.

    Bond, D. W., Steiger, S., Zhang, R., Tie, X. & Orville, R. E. The importance of NOx production by lightning in the tropics. Atmos. Environ. 36, 1509–1519 (2002).

    CAS  Article  Google Scholar 

  26. 26.

    Kang, S. M., Deser, C. & Polvani, L. M. Uncertainty in climate change projections of the Hadley circulation: The role of internal variability. J. Clim. 26, 7541–7554 (2013).

    Article  Google Scholar 

  27. 27.

    Jiang, J. H. et al. Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA ‘ATrain’ satellite observations. J. Geophys. Res. Atmos. (2012).

  28. 28.

    Jacob, D. J., & Winner, D. A. Effect of climate change on air quality. Atmos. Environ. 43, 51–63 (2009).

    CAS  Article  Google Scholar 

  29. 29.

    Toumi, R., Haigh, J. D. & Law, K. S. A tropospheric ozone-lightning climate feedback. Geophys. Res. Lett. 23, 1037–1040 (1996).

    CAS  Article  Google Scholar 

  30. 30.

    Dahlmann, K., Grewe, V., Ponater, M. & Matthes, S. Quantifying the contributions of individual NOx sources to the trend in ozone radiative forcing. Atmos. Environ. 45, 2860–2868 (2011).

    CAS  Article  Google Scholar 

  31. 31.

    Liaskos, C. E., Allen, D. J. & Pickering, K. E. Sensitivity of tropical tropospheric composition to lightning NOx production as determined by the NASA GEOS-Replay model. J. Geophys. Res. Atmos. 120, 8512–8534 (2015).

    CAS  Article  Google Scholar 

  32. 32.

    Wild, O., Prather, M. J. & Akimoto, H. Indirect long-term global radiative cooling from NOx emissions. Geophys. Res. Lett. 28, 1719–1722 (2001).

    CAS  Article  Google Scholar 

  33. 33.

    Stevenson, D. S. et al. Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys. 13, 3063–3085 (2013).

    Article  Google Scholar 

  34. 34.

    Walters, D. N. et al. The Met Office Unified Model Global Atmosphere 4.0 and JULES Global Land 4.0 configurations. Geosci. Model Dev. 7, 361–386 (2014).

    Article  Google Scholar 

  35. 35.

    O’Connor, F. M. et al. Evaluation of the new UKCA climate-composition model – Part 2: The Troposphere. Geosci. Model Dev. 7, 41–91 (2014).

    Article  Google Scholar 

  36. 36.

    Wilson, D. R., Bushell, A. C., Kerr-Munslow, A. M., Price, J. D. & Morcrette, C. J. PC2: A prognostic cloud fraction and condensation scheme. I: Scheme description. Q. J. R. Meteorol. Soc. 134, 2093–2107 (2008).

    Article  Google Scholar 

  37. 37.

    Wilson, D. R. et al. PC2: A prognostic cloud fraction and condensation scheme. II: Climate model simulations. Q. J. R. Meteorol. Soc. 134, 2109–2125 (2008).

    Article  Google Scholar 

  38. 38.

    Morcrette, C. J. Improvements to a prognostic cloud scheme through changes to its cloud erosion parametrization. Atmos. Sci. Lett. 13, 95–102 (2012).

    Article  Google Scholar 

  39. 39.

    Waliser, D. E. et al. Cloud ice: A climate model challenge with signs and expectations of progress. J. Geophys. Res. 114, D00A21 (2009).

    Article  Google Scholar 

  40. 40.

    Li, J. L. F. et al. An observationally based evaluation of cloud ice water in CMIP3 and CMIP5 GCMs and contemporary reanalyses using contemporary satellite data. J. Geophys. Res. Atmos. (2012).

  41. 41.

    Lamarque, J. F. et al. Historical (1850-2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos. Chem. Phys. 10, 7017–7039 (2010).

    CAS  Article  Google Scholar 

  42. 42.

    Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20, 5473–5496 (2007).

    Article  Google Scholar 

  43. 43.

    Rossow, W. B., Walker, A. W., Beuschel, D. E. & Roiter, M. D. International Satellite Cloud ClimatologyProject (ISCCP) Documentation of New Cloud Datasets WMO/TD-No. 737 (World Meteorological Organization,1996).

  44. 44.

    Mansell, E. R., MacGorman, D. R., Ziegler, C. L. & Straka, J. M. Simulated three-dimensional branched lightning in a numerical thunderstorm model. J. Geophys. Res. Atmos. 107, ACL 2-1–ACL 2-12 (2002).

  45. 45.

    Barthe, C., Deierling, W. & Barth, M. C. Estimation of total lightning from various storm parameters: a cloud-resolving model study. J. Geophys. Res. 115, D24202 (2010).

    Article  Google Scholar 

  46. 46.

    Barthe, C., Chong, M., Pinty, J. P., Bovalo, C. & Escobar, J. CELLSv1.0: updated and parallelized version of an electrical scheme to simulate multiple electrified clouds and flashes over large domains. Geosci. Model Dev. 5, 167–184 (2012).

    Article  Google Scholar 

  47. 47.

    Fierro, A. O., Mansell, E. R., MacGorman, D. R. & Ziegler, C. L. The implementation of an explicit charging and discharge lightning scheme within the WRF-ARW model: benchmark simulations of a continental squall line, a tropical cyclone, and a winter storm. Mon. Weather Rev. 141, 2390–2415 (2013).

    Article  Google Scholar 

  48. 48.

    Basarab, B. M., Rutledge, S. A. & Fuchs, B. R. An improved lightning flash rate parameterization developed from Colorado DC3 thunderstorm data for use in cloud-resolving chemical transport models. J. Geophys. Res. 120, 9481–9499 (2015).

    CAS  Google Scholar 

  49. 49.

    Hoerling, M. P., Schaack, T. K. & Lenzen, A. J. A global analysis of stratospheric–tropospheric exchange during northern winter. Mon. Weather Rev. 121, 162–172 (1993).

    Article  Google Scholar 

  50. 50.

    Ott, L. E. et al. Production of lightning NOx and its vertical distribution calculated from three-dimensional cloud-scale chemical transport model simulations. J. Geophys. Res. 115, D04301 (2010).

    Google Scholar 

  51. 51.

    Cecil, D. J., Buechler, D. E. & Blakeslee, R. J. Gridded lightning climatology from TRMM-LIS and OTD: dataset description. Atmos. Res. 135–136, 404–414 (2014).

    Article  Google Scholar 

  52. 52.

    Prather, M. J. et al. in Climate Change 2001: The Scientific Basis (eds Houghton, J. T., Ding, Y. & Griggs, D. J.) (IPCC, Cambridge Univ. Press, 2001).

  53. 53.

    Voulgarakis, A. et al. Analysis of present day and future OH and methane lifetime in the ACCMIP simulations. Atmos. Chem. Phys. 12, 22945–23005 (2013).

    Article  Google Scholar 

  54. 54.

    Myhre, G., Highwood, E. J., Shine, K. P. & Stordal, F. New estimates of radiative forcing due to well mixed greenhouse gases. Geophys. Res. Lett. 25, 2715–2718 (1998).

    CAS  Article  Google Scholar 

  55. 55.

    Wild, O. et al. Modelling future changes in surface ozone: a parameterized approach. Atmos. Chem. Phys. 12, 2037–2054 (2012).

    CAS  Article  Google Scholar 

Download references


This work has been supported by a Natural Environment Research Council grant NE/K500835/1. We thank L. Abraham for his assistance with set-up and use of the UK Chemistry and Aerosols model, and L. Jackson for his advice regarding the calculation of significance.

Author information




D.L.F., R.M.D. and O.W. designed the study and interpreted the results with input from other co-authors. O.W. and D.S.S. advised on the radiative forcing analysis. D.L.F. performed the analysis, developed the code and ran the simulations. D.L.F. prepared the manuscript with contributions from R.M.D. and O.W.; all co-authors reviewed the manuscript.

Corresponding author

Correspondence to Declan L. Finney.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Supplementary References, Supplementary Tables 1–3, Supplementary Figures 1–3

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Finney, D.L., Doherty, R.M., Wild, O. et al. A projected decrease in lightning under climate change. Nature Clim Change 8, 210–213 (2018).

Download citation

Further reading


Quick links