A global synthesis of animal phenological responses to climate change

Published online:


Shifts in phenology are already resulting in disruptions to the timing of migration and breeding, and asynchronies between interacting species1,2,3,4,5. Recent syntheses have concluded that trophic level1, latitude6 and how phenological responses are measured7 are key to determining the strength of phenological responses to climate change. However, researchers still lack a comprehensive framework that can predict responses to climate change globally and across diverse taxa. Here, we synthesize hundreds of published time series of animal phenology from across the planet to show that temperature primarily drives phenological responses at mid-latitudes, with precipitation becoming important at lower latitudes, probably reflecting factors that drive seasonality in each region. Phylogeny and body size are associated with the strength of phenological shifts, suggesting emerging asynchronies between interacting species that differ in body size, such as hosts and parasites and predators and prey. Finally, although there are many compelling biological explanations for spring phenological delays, some examples of delays are associated with short annual records that are prone to sampling error. Our findings arm biologists with predictions concerning which climatic variables and organismal traits drive phenological shifts.

  • Subscribe to Nature Climate Change for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Change history

  • Correction 21 February 2018

    In the PDF version of this Letter originally published, Fig. 3 was a duplicate of Fig. 1. This has now been corrected. The HTML version was unaffected.


  1. 1.

    Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).

  2. 2.

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

  3. 3.

    Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003).

  4. 4.

    Walther, G. R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).

  5. 5.

    Ge, Q. S., Wang, H. J., Rutishauser, T. & Dai, J. H. Phenological response to climate change in China: a meta-analysis. Glob. Chang. Biol. 21, 265–274 (2015).

  6. 6.

    While, G. M. & Uller, T. Quo vadis amphibia? Global warming and breeding phenology in frogs, toads and salamanders. Ecography 37, 921–929 (2014).

  7. 7.

    Brown, C. J. et al. Ecological and methodological drivers of species’ distribution and phenology responses to climate change. Glob. Chang. Biol. 22, 1548–1560 (2016).

  8. 8.

    Rosenzweig, C. et al. Attributing physical and biological impacts to anthropogenic climate change. Nature 453, 353–357 (2008).

  9. 9.

    Menzel, A. et al. European phenological response to climate change matches the warming pattern. Glob. Chang. Biol. 12, 1969–1976 (2006).

  10. 10.

    Barbraud, C. & Weimerskirch, H. Antarctic birds breed later in response to climate change. Proc. Natl Acad. Sci. USA 103, 6248–6251 (2006).

  11. 11.

    Both, C. et al. Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. Proc. R. Soc. B 277, 1259–1266 (2010).

  12. 12.

    Hegland, S. J., Nielsen, A., Lazaro, A., Bjerknes, A. L. & Totland, O. How does climate warming affect plant-pollinator interactions? Ecol. Lett. 12, 184–195 (2009).

  13. 13.

    Lane, J. E., Kruuk, L. E. B., Charmantier, A., Murie, J. O. & Dobson, F. S. Delayed phenology and reduced fitness associated with climate change in a wild hibernator. Nature 489, 554–557 (2012).

  14. 14.

    Visser, M. E. & Holleman, L. J. M. Warmer springs disrupt the synchrony of oak and winter moth phenology. Proc. R. Soc. B 268, 289–294 (2001).

  15. 15.

    McKinney, A. M. et al. Asynchronous changes in phenology of migrating broad-tailed hummingbirds and their early-season nectar resources. Ecology 93, 1987–1993 (2012).

  16. 16.

    Mas-Coma, S., Valero, M. A. & Bargues, M. D. Climate change effects on trematodiases, with emphasis on zoonotic fascioliasis and schistosomiasis. Vet. Parasitol. 163, 264–280 (2009).

  17. 17.

    Yu, H. Y., Luedeling, E. & Xu, J. C. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc. Natl Acad. Sci. USA 107, 22151–22156 (2010).

  18. 18.

    Wolkovich, E. M., Cook, B. I. & Davies, T. J. Progress towards an interdisciplinary science of plant phenology: Building predictions across space, time and species diversity. New Phytol. 201, 1156–1162 (2014).

  19. 19.

    Lajeunesse, M. J. On the meta-analysis of response ratios for studies with correlated and multi-group designs. Ecology 92, 2049–2055 (2011).

  20. 20.

    van Houwelingen, H. C., Arends, L. R. & Stijnen, T. Advanced methods in meta-analysis: multivariate approach and meta-regression. Stat. Med. 21, 589–624 (2002).

  21. 21.

    Inouye, D. W., Barr, B., Armitage, K. B. & Inouye, B. D. Climate change is affecting altitudinal migrants and hibernating species. Proc. Natl Acad. Sci. USA 97, 1630–1633 (2000).

  22. 22.

    Lawrimore, J. H. et al. An overview of the global historical climatology network monthly mean temperature data set, version 3. J. Geophys. Res. Atmos. 116, D19121 (2011).

  23. 23.

    Lajeunesse, M. J. Meta-analysis and the comparative phylogenetic method. Am. Nat. 174, 369–381 (2009).

  24. 24.

    Field, C. B. & Van Aalst, M. Climate Change 2014: Impacts, Adaptation, and Vulnerability Section 1 (eds Field, C. B. et al.) (IPCC, Cambridge Univ. Press, 2014).

  25. 25.

    Paternoster, R., Brame, R., Mazerolle, P. & Piquero, A. Using the correct statistical test for the equality of regression coefficients. Criminology 36, 859–866 (1998).

  26. 26.

    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).

  27. 27.

    Ovaskainen, O. et al. Community-level phenological response to climate change. Proc. Natl Acad. Sci. USA 110, 13434–13439 (2013).

  28. 28.

    Lehikoinen, E., Sparks, T. H. & Zalakevicius, M. Arrival and departure dates. Adv. Ecol. Res. 35, 1–31 (2004).

  29. 29.

    Gordo, O. Why are bird migration dates shifting? A review of weather and climate effects on avian migratory phenology. Clim. Res. 35, 37–58 (2007).

  30. 30.

    IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (Cambridge Univ. Press, 2015).

  31. 31.

    Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).

  32. 32.

    Dunning, J. B. Jr CRC Handbook of Avian Body Masses (CRC, Boca Raton, Florida, 1992).

  33. 33.

    Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl Acad. Sci. USA 108, 10591–10596 (2011).

  34. 34.

    Garcia-Barros, E. Body size, egg size, and their interspecific relationships with ecological and life history traits in butterflies (Lepidoptera: Papilionoidea, Hesperioidea). Biol. J. Linn. Soc. 70, 251–284 (2000).

  35. 35.

    Karlsson, B. Resource allocation and mating systems in butterflies. Evolution 49, 955–961 (1995).

  36. 36.

    Trochet, A. et al. A database of life-history traits of European amphibians. Biodivers. Data J. 2, e4123 (2014).

  37. 37.

    Brose, U. Body sizes of consumers and their resources: Ecological archives E086-135. Ecology 86, 2545–2545 (2005).

  38. 38.

    Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals: Ecological Archives E090-184. Ecology 90, 2648–2648 (2009).

  39. 39.

    Myers, P. et al. The Animal Diversity Web (2016); http://animaldiversity.org

  40. 40.

    Williams, R. N. & MacGowan, B. J. in Proc. Indiana Acad. Sci. (eds Hay, O. P. et al.) 147–150 (1891).

  41. 41.

    Chown, S. L. et al. Scaling of insect metabolic rate is inconsistent with the nutrient supply network model. Funct. Ecol. 21, 282–290 (2007).

  42. 42.

    Hódar, J. The use of regression equations for the estimation of prey length and biomass in diet studies of insectivore vertebrates. Miscell. Zool. 20, 1–10 (1997).

  43. 43.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2009).

  44. 44.

    Viechtbauer, W. Conducting meta-analyses in with the metafor package. J. Statistical Softw. 36, 3 (2010).

  45. 45.

    Olkin, I. & Finn, J. D. Correlations redux. Psychol. Bull. 118, 155–164 (1995).

  46. 46.

    Becker, B. J. in Handbook of Applied Multivariate Statistics and Mathematical Modeling (eds Tinsley, H. & Brown, S.) 499–526 (Academic, Cambridge, MA, 2000).

  47. 47.

    Higham, N. J. Computing the nearest correlation matrix—A problem from finance. IMA J. Numer. Anal. 22, 329–343 (2002).

  48. 48.

    Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

  49. 49.

    Grafen, A. The phylogenetic regression. Phil. Trans. R. Soc. B 326, 119–157 (1989).

  50. 50.

    Hedges, S. B., Dudley, J. & Kumar, S. TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22, 2971–2972 (2006).

  51. 51.

    Betancur-R, R. et al. The tree of life and a new classification of bony fishes. PLOS Current. Tree Life https://doi.org/10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288 (2013).

  52. 52.

    Meredith, R. W. et al. Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334, 521–524 (2011).

  53. 53.

    Shaffer, H. B. & McKnight, M. L. The polytypic species revisited: Genetic differentiation and molecular phylogenetics of the tiger salamander Ambystoma tigrinum (Amphibia: Caudata) complex. Evolution 50, 417–433 (1996).

  54. 54.

    Moriarty, E. C. & Cannatella, D. C. Phylogenetic relationships of the North American chorus frogs (Pseudacris: Hylidae). Mol. Phylogenet Evol. 30, 409–420 (2004).

  55. 55.

    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

  56. 56.

    Podar, M., Haddock, S. H. D., Sogin, M. L. & Harbison, G. R. A molecular phylogenetic framework for the phylum Ctenophora using 18S rRNA genes. Mol. Phylogenet Evol. 21, 218–230 (2001).

  57. 57.

    Regier, J. C. et al. A large-scale, higher-level, molecular phylogenetic study of the insect order Lepidoptera (moths and butterflies). PLoS ONE 8, e58568 (2013).

  58. 58.

    Trautwein, M. D., Wiegmann, B. M., Beutel, R., Kjer, K. M. & Yeates, D. K. Advances in insect phylogeny at the dawn of the postgenomic era. Annu. Rev. Entomol. 57, 449–44 (2012).

  59. 59.

    Wahlberg, N. et al. Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers. Proc. R. Soc. B 272, 1577–1586 (2005).

  60. 60.

    Freitas, A. V. L. & Brown, K. S. Phylogeny of the Nymphalidae (Lepidoptera). Syst. Biol. 53, 363–383 (2004).

  61. 61.

    Dumont, H. J., Vierstraete, A. & Vanfleteren, J. R. A molecular phylogeny of the Odonata (Insecta). Syst. Entomol. 35, 6–18 (2010).

Download references


We thank N. Argento and C. Gionet for assistance extracting data from studies, T. James for assistance compiling references, C. Parmesan for helpful discussions on vernalization and phenological meta-analyses in general, and D. Civitello, B. Delius, N. Halstead, S. Knutie, K. Nguyen, N. Ortega, B. Roznik, E. Sauer and S. Young for comments that resulted in significant improvements to the manuscript. This research was supported by grants from the National Science Foundation to M.J.L (DBI-1262545, DEB-1451031) and J.R.R. (EF-1241889, DEB-1518681) and National Institutes of Health (R01GM109499, R01TW010286), US Department of Agriculture (NRI 2006–01370, 2009-35102-0543) and US Environmental Protection Agency (CAREER 83518801) to J.R.R.

Author information


  1. Department of Integrative Biology, University of South Florida, Tampa, FL, USA

    • Jeremy M. Cohen
    • , Marc J. Lajeunesse
    •  & Jason R. Rohr


  1. Search for Jeremy M. Cohen in:

  2. Search for Marc J. Lajeunesse in:

  3. Search for Jason R. Rohr in:


J.M.C., M.J.L., and J.R.R. contributed ideas and devised the analyses. J.M.C. assembled the database of phenological time-series and collected climate data. M.J.L. designed and conducted the analyses. J.M.C., M.J.L. and J.R.R. wrote the paper.

Competing interests

The authors declare no competing interests

Corresponding author

Correspondence to Jeremy M. Cohen.

Supplementary information

  1. Supplementary Information

    Supplementary Discussion, Supplementary Figures 1–6, Supplementary Tables 1–8, Supplementary Code, Supplementary References and PRISMA Checklist