Climate-sensitive Arctic lakes have been identified as conduits for ancient permafrost-carbon (C) emissions and as such accelerate warming. However, the environmental factors that control emission pathways and their sources are unclear; this complicates upscaling, forecasting and climate-impact-assessment efforts. Here we show that current whole-lake CH4 and CO2 emissions from widespread lakes in Arctic Alaska primarily originate from organic matter fixed within the past 3–4 millennia (modern to 3,300 ± 70 years before the present), and not from Pleistocene permafrost C. Furthermore, almost 100% of the annual diffusive C flux is emitted as CO2. Although the lakes mostly processed younger C (89 ± 3% of total C emissions), minor contributions from ancient C sources were two times greater in fine-textured versus coarse-textured Pleistocene sediments, which emphasizes the importance of the underlying geological substrate in current and future emissions. This spatially extensive survey considered the environmental and temporal variability necessary to monitor and forecast the fate of ancient permafrost C as Arctic warming progresses.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Verpoorter, C., Kutser, T., Seekell, D. A. & Tranvik, L. J. A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 41, 6396–6402 (2014).

  2. 2.

    Wik, M., Varner, R. K., Anthony, K. W., MacIntyre, S. & Bastviken, D. Climate-sensitive northern lakes and ponds are critical components of methane release. Nat. Geosci. 9, 99–106 (2016).

  3. 3.

    Kirschke, S. et al. Three decades of global methane sources and sinks. Nat. Geosci. 6, 813–823 (2013).

  4. 4.

    Walter, K. M., Smith, L. C. & Chapin, F. S. Methane bubbling from northern lakes: present and future contributions to the global methane budget. Phil. Trans. A. 365, 1657–1676 (2007).

  5. 5.

    Bastviken, D., Tranvik, L., Downing, J., Crill, P. & Enrich-Prast, A. Freshwater methane emissions offset the continental carbon sink. Science 331, 50 (2011).

  6. 6.

    Tan, Z. & Zhuang, Q. Arctic lakes are continuous methane sources to the atmosphere under warming conditions. Environ. Res. Lett. 10, 54016 (2015).

  7. 7.

    Schneider Von Deimling, T. et al. Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity. Biogeosciences 12, 3469–3488 (2015).

  8. 8.

    Lawrence, D. M., Slater, A. G. & Swenson, S. C. Simulation of present-day and future permafrost and seasonally frozen ground conditions in CCSM4. J. Clim. 25, 2207–2225 (2012).

  9. 9.

    Jorgenson, M. T. & Shur, Y. Evolution of lakes and basins in northern Alaska and discussion of the thaw lake cycle. J. Geophys. Res. Earth Surf. 112, 1–12 (2007).

  10. 10.

    Strauss, J. et al. The deep permafrost carbon pool of the Yedoma region in Siberia and Alaska. Geophys. Res. Lett. 40, 6165–6170 (2013).

  11. 11.

    Olefeldt, D. et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 7, 13043 (2016).

  12. 12.

    Matheus Carnevali, P. B. et al. Methane sources in Arctic thermokarst lake sediments on the North Slope of Alaska. Geobiology 13, 181–197 (2015).

  13. 13.

    Bastviken, D., Cole, J., Pace, M. & Tranvik, L. Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Glob. Biogeochem. Cycles 18, 1–12 (2004).

  14. 14.

    Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

  15. 15.

    Arp, C. D. et al. Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate. Geophys. Res. Lett. 43, 1–8 (2016).

  16. 16.

    Walter, K. M., Zimov, S. A., Chanton, J. P., Verbyla, D. & Chapin, F. S. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443, 71–75 (2006).

  17. 17.

    Walter, K. M., Chanton, J. P., Chapin, F. S., Schuur, E. A. G. & Zimov, S. A. Methane production and bubble emissions from Arctic lakes: isotopic implications for source pathways and ages. J. Geophys. Res. 113, G00A08 (2008).

  18. 18.

    Walter Anthony, K. et al. Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s. Nat. Geosci. 9, 679–682 (2016).

  19. 19.

    Zimov, S. A. et al. North Siberian lakes: a methane source fueled by pleistocene carbon. Science 277, 800–802 (1997).

  20. 20.

    Brosius, L. S. et al. Using the deuterium isotope composition of permafrost meltwater to constrain thermokarst lake contributions to atmospheric CH4 during the last deglaciation. J. Geophys. Res. 117, G01022 (2012).

  21. 21.

    Bouchard, F. et al. Modern to millennium-old greenhouse gases emitted from ponds and lakes of the Eastern Canadian Arctic (Bylot Island, Nunavut). Biogeosciences 12, 7279–7298 (2015).

  22. 22.

    Sepulveda-Jauregui, A., Walter Anthony, K. M., Martinez-Cruz, K., Greene, S. & Thalasso, F. Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska. Biogeosciences 12, 3197–3223 (2015).

  23. 23.

    Lindgren, P. R., Grosse, G., Anthony, K. M. W. & Meyer, F. J. Detection and spatiotemporal analysis of methane ebullition on thermokarst lake ice using high-resolution optical aerial imagery. Biogeosciences 13, 27–44 (2016).

  24. 24.

    Wik, M., Thornton, B. F., Bastviken, D., Uhlbäck, J. & Crill, P. M. Biased sampling of methane release from northern lakes: a problem for extrapolation. Geophys. Res. Lett. 43, 1256–1262 (2016).

  25. 25.

    Matveev, A., Laurion, I., Deshpande, B. N., Bhiry, N. & Vincent, W. F. High methane emissions from thermokarst lakes in subarctic peatlands. Limnol. Oceanogr. 61, S150–S164 (2016).

  26. 26.

    Tranvik, L. J. et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 54, 2298–2314 (2009).

  27. 27.

    Kling, G., Kipphut, G. & Miller, M. The flux of CO2 and CH4 from lakes and rivers in arctic Alaska. Hydrobiologia 240, 23–36 (1992).

  28. 28.

    Negandhi, K. et al. Small thaw ponds: an unaccounted source of methane in the Canadian High Arctic. PLoS. ONE 8, e78204 (2013).

  29. 29.

    Frohn, R. C., Hinkel, K. M. & Eisner, W. R. Satellite remote sensing classification of thaw lakes and drained thaw lake basins on the North Slope of Alaska. Remote. Sens. Environ. 97, 116–126 (2005).

  30. 30.

    Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593 (2014).

  31. 31.

    Schirrmeister, L., Froese, D., Tumskoy, V., Grosse, G. & Wetterich, S. Yedoma: Late Pleistocene ice-rich syngenetic permafrost of Beringia. Encycl. Quat. Sci. 3, 542–552 (2013).

  32. 32.

    Black, R. F. Gubik Formation of Quaternary Age in Northern Alaska Professional Paper 302-C (USGS, 1964).

  33. 33.

    Carter, L. D. A Pleistocene sand sea on the Alaskan Arctic Coastal Plain. Science 211, 381–383 (1981).

  34. 34.

    Kanevskiy, M., Shur, Y., Fortier, D., Jorgenson, M. T. & Stephani, E. Cryostratigraphy of late Pleistocene syngenetic permafrost (yedoma) in northern Alaska, Itkillik River exposure. Quat. Res. 75, 584–596 (2011).

  35. 35.

    Jorgenson, M. T. et al. Permafrost Database Development, Characterization, and Mapping for Northern Alaska Final Report (US Fish and Wildlife Service, 2014).

  36. 36.

    Greene, S., Walter Anthony, K. M., Archer, D., Sepulveda-Jauregui, A. & Martinez-Cruz, K. Modeling the impediment of methane ebullition bubbles by seasonal lake ice. Biogeosciences 11, 6791–6811 (2014).

  37. 37.

    Phillips, D. L. & Gregg, J. W. Source partitioning using stable isotopes: coping with too many sources. Oecologia 136, 261–269 (2003).

  38. 38.

    Townsend-Small, A., Akerstrom, F., Arp, C. & Hinkel, K. M. Spatial and temporal variation in methane concentrations, fluxes, and sources in lakes in Arctic Alaska. J. Geophys. Res. Biogeosci. 112, 1–14 (2017).

  39. 39.

    Whiticar, M. J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol. 161, 291–314 (1999).

  40. 40.

    Walter Anthony, K. M., Anthony, P., Grosse, G. & Chanton, J. Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers. Nat. Geosci. 5, 419–426 (2012).

  41. 41.

    Myhre, G. et al. in Climate Change 2013: The Physical Science Basis. (eds Stocker, T. F. et al.) 659–740 (IPPC, Cambridge Univ. Press, Cambridge, 2013).

  42. 42.

    Walter Anthony, K. M. et al. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Nature 511, 452–456 (2014).

  43. 43.

    Hinkel, K. M. et al. Thermokarst lakes on the Arctic Coastal Plain of Alaska: spatial and temporal variability in summer water temperature. Permafr. Periglac. 23, 207–217 (2012).

  44. 44.

    Hinkel, K. M. et al. Thermokarst lakes on the Arctic Coastal Plain of Alaska: geomorphic controls on bathymetry. Permafr. Periglac. 23, 218–230 (2012).

  45. 45.

    Yamamoto, S., Alcauskas, J. B. & Crozier, T. E. Solubility of methane in distilled water and seawater. J. Chem. Eng. Data 21, 78–80 (1976).

  46. 46.

    Pack, M. A., Xu, X., Lupascu, M., Kessler, J. D. & Czimczik, C. I. A rapid method for preparing low volume CH4 and CO2 gas samples for C-14 AMS analysis. Org. Geochem. 78, 89–98 (2015).

  47. 47.

    Xu, X. et al. Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: reducing background and attaining high precision. Nucl. Instrum. Methods Phys. Res. B 259, 320–329 (2007).

  48. 48.

    Beverly, R. K. et al. The Keck Carbon Cycle AMS Laboratory, University of California, Irvine: status report. Radiocarbon, 52, 301–309 (2010).

  49. 49.

    Stuiver, M. & Polach, H. Reporting of 14C data. Radiocarbon 19, 355–363 (1977).

  50. 50.

    Sparrow, K. J. & Kessler, J. D. Efficient collection and preparation of methane from low concentration waters for natural abundance radiocarbon analysis. Limnol. Oceanogr. Methods 15, 601–617 (2017).

  51. 51.

    Magen, C. C. et al. A simple headspace equilibration method for measuring dissolved methane. Limnol. Oceanogr. Methods 12, 637–650 (2014).

  52. 52.

    Stumm, W. & Morgan, J. J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters 3rd edn (Wiley, Chichester, 1995).

  53. 53.

    Cole, J. & Caraco, N. Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnol. Oceanogr. 43, 647–656 (1998).

  54. 54.

    Phelps, A., Peterson, K. & Jeffries, M. Methane effiux from high-latitude lakes during spring ice melt. J. Geophys. Res. 103, 29029–29036 (1998).

  55. 55.

    Kling, G. W., Kipphut, G. W. & Miller, M. C. Arctic lakes and streams as gas conduits to the atmosphere: implications for tundra carbon budgets. Science 251, 298–301 (1991).

  56. 56.

    Wik, M. et al. Energy input is primary controller of methane bubbling in subarctic lakes. Geophys. Res. Lett. 41, 555–560 (2014).

  57. 57.

    Boereboom, T., Depoorter, M., Coppens, S. & Tison, J.-L. Gas properties of winter lake ice in Northern Sweden: implication for carbon gas release. Biogeosciences 9, 827–838 (2012).

  58. 58.

    Schilder, J. et al. Spatial heterogeneity and lake morphology affect diffusive greenhouse gas emission estimates of lakes. Geophys. Res. Lett. 40, 5752–5756 (2013).

  59. 59.

    Grunblatt, J. & Atwood, D. Mapping lakes for winter liquid water availability using SAR on the north slope of Alaska. Int. J. Appl. Earth Obs. Geoinf. 27, 63–69 (2014).

  60. 60.

    Hua, Q., Barbetti, M. & Rakowski, A. Z. Atmospheric radiocarbon for the period 1950-2010. Radiocarbon 55, 2059–2072 (2013).

Download references


We are grateful to UIC Science (Ukpeagvik Inupiat Corporation) and the city of Atqasuk for logistical support and access to field sites, in particular A. Danner, N. Harcharek, E. Burnett, K. Newyear and D. Whiteman. We thank J. Chaplin (ChaplinAK Air) for flying and patiently floating. At UC Irvine, we thank M. Crawford, J. G. Mazariegos, M. A. Larios, M. Schweiger, C. McCormick, E. Cirací and R. A. Jimenez for assistance with the equipment and/or sample or data processing, and the KCCAMS staff for assisting with isotope analysis. Funding was provided by the Hellman foundation, UCI Council on Research, Computing and Libraries (to C.I.C.), the ARCS foundation (to C.D.E.), and US National Science Foundation grants AON-1107607 (to K.H. and A.T.-S.) and ARC-1107481 (to C.D.A.). We thank D. H. Mann and P. Groves, who were instrumental in the sediment sampling. We also thank B. Jones and G. Grosse for their valuable assistance in the field.

Author information

Author notes

    • Jordan L. Schnell

    Present address: Department of Earth and Planetary Sciences, Northwestern University, Evanston, IL, USA

    • Kenneth M. Hinkel

    Present address: Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, MI, USA


  1. Department of Earth System Science, University of California, Irvine, CA, USA

    • Clayton D. Elder
    • , Xiaomei Xu
    • , Jennifer Walker
    • , Jordan L. Schnell
    •  & Claudia I. Czimczik
  2. Department of Geography, University of Cincinnati, Cincinnati, OH, USA

    • Kenneth M. Hinkel
  3. Department of Geology, University of Cincinnati, Cincinnati, OH, USA

    • Amy Townsend-Small
  4. Water and Environmental Research Center, University of Alaska, Fairbanks, AK, USA

    • Christopher D. Arp
  5. USGS Woods Hole Coastal and Marine Science Center, Woods Hole, MA, USA

    • John W. Pohlman
  6. Lamont–Doherty Earth Observatory of Columbia University, Palisades, NY, USA

    • Benjamin V. Gaglioti


  1. Search for Clayton D. Elder in:

  2. Search for Xiaomei Xu in:

  3. Search for Jennifer Walker in:

  4. Search for Jordan L. Schnell in:

  5. Search for Kenneth M. Hinkel in:

  6. Search for Amy Townsend-Small in:

  7. Search for Christopher D. Arp in:

  8. Search for John W. Pohlman in:

  9. Search for Benjamin V. Gaglioti in:

  10. Search for Claudia I. Czimczik in:


C.D.E, X.X., J.W., C.I.C, B.V.G. and J.W.P. performed the measurements. J.L.S. developed the methodology and produced the figures for the spatial CH4 interpolations. C.D.E, C.I.C., K.M.H., A.T.-S., C.D.A. and B.V.G. were all involved with the field logistics and sampling. B.V.G. contributed to all the work and data related to the sedimentary organic C content sampling. All the authors participated in the interpretation and presentation of the results.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Clayton D. Elder or Claudia I. Czimczik.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–4, Supplementary Tables 1–4 and Supplementary References

About this article

Publication history




Issue Date



Further reading