Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Synergy between nutrients and warming enhances methane ebullition from experimental lakes

Abstract

Lakes and ponds are important natural sources of the potent greenhouse gas methane (CH4), with small shallow waters identified as particular hotspots1,2. Ebullition (bubbles) of CH4 makes up a large proportion of total CH4 flux3,4. However, difficulty measuring such episodic events5 makes prediction of how ebullition responds to nutrient enrichment and rising temperatures challenging. Here, the world’s longest running, mesocosm-based, shallow lake climate change experiment was used to investigate how the combination of warming and eutrophication (that is, nutrient enrichment) affects CH4 ebullition. Eutrophication without heating increased the relative contribution of ebullition from 51% to 75%. More strikingly the combination of nutrient enrichment and experimental warming treatments of +2–3 °C and +4–5 °C had a synergistic effect, increasing mean annual ebullition by at least 1900 mg CH4-C m−2 yr−1. In contrast, diffusive flux showed no response to eutrophication and only a small increase at higher temperatures (average 63 mg CH4–C m−2 yr−1). As shallow lakes are the most common lake type globally, abundant in highly climate sensitive regions6 and most vulnerable to eutrophication, these results suggest their current and future contributions to atmospheric CH4 concentrations may be significantly underestimated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Seasonal variation of diffusive and ebullitive methane flux measured over a year across the experimental treatments.
Fig. 2: Total annual CH4 flux per experimental treatment and total annual ebullition against plant abundance and cover.

Similar content being viewed by others

References

  1. Holgerson, M. A. & Raymond, P. A. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nat. Geosci. 9, 222–226 (2016).

    Article  CAS  Google Scholar 

  2. Tranvik, L. J. et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 54, 2298–2314 (2009).

    Article  CAS  Google Scholar 

  3. Wik, M., Varner, R. K., Anthony, K. W., MacIntyre, S. & Bastviken, D. Climate-sensitive northern lakes and ponds are critical components of methane release. Nat. Geosci. 9, 99–105 (2016).

    Article  CAS  Google Scholar 

  4. DelSontro, T., Boutet, L., St-Pierre, A., del Giorgio, P. A. & Prairie, Y. T. Methane ebullition and diffusion from northern ponds and lakes regulated by the interaction between temperature and system productivity. Limnol. Oceanogr. 61, S62–S77 (2016).

    Article  CAS  Google Scholar 

  5. Wik, M., Thornton, B. F., Bastviken, D., Uhlbäck, J. & Crill, P. M. Biased sampling of methane release from northern lakes: A problem for extrapolation. Geophys. Res. Lett. 43, 1256–1262 (2016).

    Article  CAS  Google Scholar 

  6. Verpoorter, C., Kutser, T., Seekell, D. A. & Tranvik, L. J. A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 41, 6396–6402 (2014).

    Article  Google Scholar 

  7. Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M. & Enrich-Prast, A. Freshwater methane emissions offset the continental carbon sink. Science 331, 50–50 (2011).

    Article  CAS  Google Scholar 

  8. Kirschke, S. et al. Three decades of global methane sources and sinks. Nat. Geosci. 6, 813–823 (2013).

    Article  CAS  Google Scholar 

  9. Saunois, M. et al. The global methane budget 2000–2012. Earth Syst. Sci. Data 8, 697–751 (2016).

    Article  Google Scholar 

  10. Cole, J. et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10, 172–185 (2007).

    Article  Google Scholar 

  11. Bastviken, D., Cole, J., Pace, M. & Tranvik, L. Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Glob. Biogeochem. Cycles 18, GB4009 (2004).

    Article  Google Scholar 

  12. Wilkinson, J., Maeck, A., Alshboul, Z. & Lorke, A. Continuous seasonal river ebullition measurements linked to sediment methane formation. Environ. Sci. Technol. 49, 13121–13129 (2015).

    Article  CAS  Google Scholar 

  13. Wik, M. et al. Energy input is primary controller of methane bubbling in subarctic lakes. Geophys. Res. Lett. 41, 2013GL058510 (2014).

    Article  Google Scholar 

  14. Moss, B., Kosten, S., Meerhoff, M. & Battarbee, R. W. Allied attack: climate change and eutrophication. Inland Waters 1, 101–105 (2011).

    Article  Google Scholar 

  15. Yvon-Durocher, G. et al. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507, 488–491 (2014).

    Article  CAS  Google Scholar 

  16. Davidson, T. A. et al. Eutrophication effects on greenhouse gas fluxes from shallow-lake mesocosms override those of climate warming. Glob. Chang. Biol. 21, 4449–4463 (2015).

    Article  Google Scholar 

  17. Deemer, B. R. et al. Greenhouse gas emissions from reservoir water surfaces: A new global synthesis. BioScience 66, 949–964 (2016).

    Article  Google Scholar 

  18. Yvon-Durocher, G., Hulatt, C. J., Woodward, G. & Trimmer, M. Long-term warming amplifies shifts in the carbon cycle of experimental ponds. Nat. Clim. Chang. 7, 209–213 (2017).

    Article  CAS  Google Scholar 

  19. Jeppesen, E., Søndergaard, M., Søndergaard, M. & Christoffersen, K. The Structuring Role of Submerged Macrophytes in Lakes (Springer-Verlag, New York, 1998).

    Book  Google Scholar 

  20. West, W. E., Creamer, K. P. & Jones, S. E. Productivity and depth regulate lake contributions to atmospheric methane. Limnol. Oceanogr. 61, S51–S61 (2015). (S1).

    Article  Google Scholar 

  21. Sanders, I. A. et al. Emission of methane from chalk streams has potential implications for agricultural practices. Freshw. Biol. 52, 1176–1186 (2007).

    Article  CAS  Google Scholar 

  22. Dacey, J. W. H. & Klug, M. J. Methane efflux from lake sediments through Water Lilies. Science 203, 1253–1255 (1979).

    Article  CAS  Google Scholar 

  23. Heilman, M. A. & Carlton, R. G. Methane oxidation associated with submersed vascular macrophytes and its impact on plant diffusive methane flux. Biogeochemistry 52, 207–224 (2001).

    Article  Google Scholar 

  24. Yoshida, N., Iguchi, H. & Yurimoto, H. Aquatic plant surface as a niche for methanotrophs. Front. Microbiol. 5, 1–9 (2014).

    Article  Google Scholar 

  25. Sayer, C. D., Davidson, T. A. & Jones, J. Seasonal dynamics of macrophytes and phytoplankton in shallow lakes: a eutrophication-driven pathway from plants to plankton? Freshw. Biol. 55, 500–513 (2010).

    Article  CAS  Google Scholar 

  26. Vadeboncoeur, Y. et al. From Greenland to green lakes: Cultural eutrophication and the loss of benthic pathways in lakes. Limnol. Oceanogr. 48, 1408–1418 (2003).

    Article  Google Scholar 

  27. Attermeyer, K. et al. Invasive floating macrophytes reduce greenhouse gas emissions from a small tropical lake. Sci. Rep. 6, 20424 (2016).

    Article  CAS  Google Scholar 

  28. Krause-Jensen, D. & Duarte, C. M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9, 737–742 (2016).

    Article  CAS  Google Scholar 

  29. West, W. E., Coloso, J. J. & Jones, S. E. Effects of algal and terrestrial carbon on methane production rates and methanogen community structure in a temperate lake sediment. Freshw. Biol. 57, 949–955 (2012).

    Article  CAS  Google Scholar 

  30. Sorrell, B. K., Downes, M. T. & Stanger, C. L. Methanotrophic bacteria and their activity on submerged aquatic macrophytes. Aquat. Bot. 72, 107–119 (2002).

    Article  Google Scholar 

  31. Jankowski, T., Livingstone, D. M. & Bührer, H. Consequences of the 2003 European heat wave for lake temperature profiles, thermal stability, and hypolimnetic oxygen depletion: Implications for a warmer world. Limnol. Oceanogr. 51, 815–819 (2006).

    Article  Google Scholar 

  32. Bartosiewicz, M., Laurion, I., Clayer, F. & Maranger, R. Heat-wave effects on oxygen, nutrients, and phytoplankton can alter global warming potential of gases emitted from a small shallow lake. Environ. Sci. Technol. 50, 6267–6275 (2016).

    Article  CAS  Google Scholar 

  33. IPCC Climate Change 2001: The Scientific Basis (eds Houghton, J. T. et al.) (Cambridge University Press, Cambridge, 2001).

  34. Liboriussen, L. et al. Global warming: Design of a flow-through shallow lake mesocosm climate experiment. Limnol. Oceanogr.: Methods 3, 1–9 (2005).

    Article  Google Scholar 

  35. Scheffer, M., Hosper, S. H., Meijer, M. L., Moss, B. & Jeppesen, E. Alternative equilibria in shallow lakes. Trends Ecol. Evol. 8, 275–279 (1993).

    Article  CAS  Google Scholar 

  36. Raymond, P. A., Caraco, N. F. & Cole, J. J. Carbon dioxide concentration and atmospheric flux in the Hudson River. Estuaries 20, 381–390 (1997).

    Article  CAS  Google Scholar 

  37. Wik, M., Crill, P. M., Varner, R. K. & Bastviken, D. Multiyear measurements of ebullitive methane flux from three subarctic lakes. J. Geophys. Res. Biogeosci. 118, 1307–1321 (2013).

    Article  Google Scholar 

  38. Petersen, S. O. et al. Annual emissions of CH4 and N2O, and ecosystem respiration, from eight organic soils in Western Denmark managed by agriculture. Biogeosciences 9, 403–422 (2012).

    Article  CAS  Google Scholar 

  39. Wiesenburg, D. A. & Guinasso, N.L. Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water. J. Chem. Eng. Data 24, 356–360 (1979).

    Article  CAS  Google Scholar 

  40. Gålfalk, M., Bastviken, D., Fredriksson, S. & Arneborg, L. Determination of the piston velocity for water-air interfaces using flux chambers, acoustic Doppler velocimetry, and IR imaging of the water surface. J. Geophys. Res. Biogeosci. 118, 770–782 (2013).

    Article  Google Scholar 

  41. Jähne, B. et al. On the parameters influencing air-water gas exchange. J. Geophys. Res. Oceans 92, 1937–1949 (1987).

    Article  Google Scholar 

  42. Liboriussen, L. et al. Effects of warming and nutrients on sediment community respiration in shallow lakes: an outdoor mesocosm experiment. Freshw. Biol. 56, 437–447 (2011).

    Article  CAS  Google Scholar 

  43. Wanninkhof, R. Relationship between wind-speed and gas-exchange over the ocean. J. Geophys. Res. Oceans 97, 7373–7382 (1992).

    Article  Google Scholar 

  44. Deacon, E. L. Sea-air gas transfer: The wind speed dependence. Bound. Layer. Meteorol. 21, 31–37 (1981).

    Article  Google Scholar 

  45. Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R package v.3.1–131 (2014); https://CRAN.R-project.org/package=nlme

  46. Zuur, A. F, Ieno, E. N, Walker, N, Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R. (Springer New York, New York, 2009).

    Book  Google Scholar 

  47. R Development Core Team R: a Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, Austria, 2011).

    Google Scholar 

  48. Maj, A. lmmfit: Goodness-of-fit-measures for linear mixed models with one-level-grouping. R package v.2.14 (2011).

Download references

Acknowledgements

The facility where this work was carried out was supported by the MARS (Managing Aquatic ecosystems and water Resources under multiple Stress) funded under the 7th EU Framework Programme, Theme 6 (Environment including Climate Change), Contract No. 603378 (http://www.mars-project.eu), AQUACOSM (Network of Leading European AQUAtic MesoCOSM Facilities Connecting Mountains to Oceans from the Arctic to the Mediterranean) and PROGNOS (Predicting in-lake RespOnses to chanGe using Near real time MOdelS- Water joint programme initiative) and ANAEE (anaee.dk). We would also like to thank the Carlsbergfondet for support to E.J. and T.A.D. J.A. was supported by FORMAS (grant 2015-1559), J.S. by the Marie Skłodowska-Curie fellowship (660655) and the Academy of Finland (project 296918). We are grateful to Dorte Nedergaard for the skilled GC analyses.

Author information

Authors and Affiliations

Authors

Contributions

T.A.D. designed the study, collected the data, analysed the data and wrote the manuscript. J.A. calculated the fluxes, E.J., J.A. and J.S. commented on the manuscript. F.L.A., T.L.L. and M.S. are key members of the group that supports the long-running mesocosm experiment.

Corresponding author

Correspondence to Thomas A. Davidson.

Ethics declarations

Competing interest

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figure 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davidson, T.A., Audet, J., Jeppesen, E. et al. Synergy between nutrients and warming enhances methane ebullition from experimental lakes. Nature Clim Change 8, 156–160 (2018). https://doi.org/10.1038/s41558-017-0063-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-017-0063-z

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology