Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Global-scale hydrological response to future glacier mass loss


Worldwide glacier retreat and associated future runoff changes raise major concerns over the sustainability of global water resources1,2,3,4, but global-scale assessments of glacier decline and the resulting hydrological consequences are scarce5,6. Here we compute global glacier runoff changes for 56 large-scale glacierized drainage basins to 2100 and analyse the glacial impact on streamflow. In roughly half of the investigated basins, the modelled annual glacier runoff continues to rise until a maximum (‘peak water’) is reached, beyond which runoff steadily declines. In the remaining basins, this tipping point has already been passed. Peak water occurs later in basins with larger glaciers and higher ice-cover fractions. Typically, future glacier runoff increases in early summer but decreases in late summer. Although most of the 56 basins have less than 2% ice coverage, by 2100 one-third of them might experience runoff decreases greater than 10% due to glacier mass loss in at least one month of the melt season, with the largest reductions in central Asia and the Andes. We conclude that, even in large-scale basins with minimal ice-cover fraction, the downstream hydrological effects of continued glacier wastage can be substantial, but the magnitudes vary greatly among basins and throughout the melt season.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of the changes in runoff from a glacierized basin in response to continuous atmospheric warming.
Fig. 2: Peak water in all the glacierized macroscale drainage basins.
Fig. 3: Monthly glacier runoff changes over the two periods 2000–2050 and 2000–2090.
Fig. 4: Contribution of future glacier runoff changes (between 2000 and 2090) to the macroscale basin runoff in all 56 investigated basins.
Fig. 5: Projected glacier runoff changes and contribution to basin-scale runoff.


  1. Barnett, T. P., Adam, J. C. & Lettenmaier, D. P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438, 303–309 (2005).

    Article  CAS  Google Scholar 

  2. Immerzeel, W. W., van Beek, L. P. H. & Bierkens, M. F. P. Climate change will affect the Asian water towers. Science 328, 1382–1385 (2010).

    Article  CAS  Google Scholar 

  3. Kaser, G., Grosshauser, M. & Marzeion, B. Contribution potential of glaciers to water availability in different climate regimes. Proc. Natl Acad. Sci. USA 107, 20223–20227 (2010).

    Article  CAS  Google Scholar 

  4. Pritchard, H. D. Asia’s glaciers are a regionally important buffer against drought. Nature 545, 169–174 (2017).

    Article  CAS  Google Scholar 

  5. Bliss, A., Hock, R. & Radić, V. Global response of glacier runoff to twenty-first century climate change. J. Geophys. Res. Earth Surf. 119, 717–730 (2014).

  6. Radić, V. & Hock, R. Glaciers in the Earth’s hydrological cycle: assessments of glacier mass and runoff changes on global and regional scales. Surv. Geophys. 35, 813–837 (2014).

    Article  Google Scholar 

  7. Beniston, M. Climatic change in mountain regions: a review of possible impacts. Clim. Chang. 59, 5–31 (2003).

    Article  Google Scholar 

  8. Xu, J. et al. The melting Himalayas: cascading effects of climate change on water, biodiversity, and livelihoods. Conserv. Biol. 23, 520–530 (2009).

    Article  CAS  Google Scholar 

  9. Marzeion, B., Jarosch, A. H. & Hofer, M. Past and future sea-level change from the surface mass balance of glaciers. Cryosphere 6, 1295–1322 (2012).

    Article  Google Scholar 

  10. Radić, V. et al. Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Clim. Dyn. 42, 37–58 (2014).

    Article  Google Scholar 

  11. Huss, M. & Hock, R. A new model for global glacier change and sea-level rise. Frontiers in Earth Science 3, 54 (2015).

  12. Gleick, P. H. & Palaniappan, M. Peak water limits to freshwater withdrawal and use. Proc. Natl Acad. Sci. USA 107, 11155–11162 (2010).

    Article  CAS  Google Scholar 

  13. Jansson, P., Hock, R. & Schneider, T. The concept of glacier storage—a review. J. Hydrol. 282, 116–129 (2003).

    Article  Google Scholar 

  14. Immerzeel, W. W., Pellicciotti, F. & Bierkens, M. F. P. Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. Nat. Geosci. 6, 742–745 (2013).

    Article  CAS  Google Scholar 

  15. Ragettli, S., Immerzeel, W. W. & Pellicciotti, F. Contrasting climate change impact on river flows from high-altitude catchments in the Himalayan and Andes Mountains. Proc. Natl. Acad. Sci. USA 113, 9222–9227 (2016).

    Article  CAS  Google Scholar 

  16. Sorg, A., Huss, M., Rohrer, M. & Stoffel, M. The days of plenty might soon be over in glacierized Central Asian catchments. Environ. Res. Lett. 9, 104018 (2014).

    Article  Google Scholar 

  17. Duethmann, D., Menz, C., Jiang, T. & Vorogushyn, S. Projections for headwater catchments of the Tarim River reveal glacier retreat and decreasing surface water availability but uncertainties are large. Environ. Res. Lett. 11, 054024 (2016).

    Article  Google Scholar 

  18. Juen, I., Kaser, G. & Georges, C. Modelling observed and future runoff from a glacierized tropical catchment (Cordillera Blanca, Perú). Glob. Planet. Chang. 59, 37–48 (2007).

    Article  Google Scholar 

  19. Baraer, M. et al. Glacier recession and water resources in Peru’s Cordillera Blanca. J. Glaciol. 58, 134–150 (2012).

    Article  Google Scholar 

  20. Frans, C. et al. Implications of decadal to century scale glacio-hydrological change for water resources of the Hood River basin, OR, USA. Hydrol. Process. 30, 4314–4329 (2016).

    Google Scholar 

  21. Lambrecht, A. & Mayer, C. Temporal variability of the non-steady contribution from glaciers to water discharge in western Austria. J. Hydrol. 376, 353–361 (2009).

    Article  Google Scholar 

  22. Comeau, L. E. L., Pietroniro, A. & Demuth, M. N. Glacier contribution to the North and South Saskatchewan Rivers. Hydrol. Process. 23, 2640–2653 (2009).

    Article  Google Scholar 

  23. Neal, E. G., Hood, E. & Smikrud, K. Contribution of glacier runoff to freshwater discharge into the Gulf of Alaska. Geophys. Res. Lett. 37, L06404 (2010).

    Article  Google Scholar 

  24. Huss, M. Present and future contribution of glacier storage change to runoff from macroscale drainage basins in Europe. Water Resour. Res. 47, W07511 (2011).

    Article  Google Scholar 

  25. Schaner, N., Voisin, N., Nijssen, B. & Lettenmaier, D. P. The contribution of glacier melt to streamflow. Environ. Res. Lett. 7, 034029 (2012).

    Article  Google Scholar 

  26. Stahl, K., Moore, R. D., Shea, J. M., Hutchinson, D. & Cannon, A. J. Coupled modelling of glacier and streamflow response to future climate scenarios. Water Resour. Res. 44, W02422 (2008).

    Article  Google Scholar 

  27. Farinotti, D., Usselmann, S., Huss, M., Bauder, A. & Funk, M. Runoff evolution in the Swiss Alps: projections for selected high-alpine catchments based on ENSEMBLES scenarios. Hydrol. Process. 26, 1909–1924 (2012).

    Article  Google Scholar 

  28. Lutz, A., Immerzeel, W., Shrestha, A. & Bierkens, M. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Chang. 4, 587–592 (2014).

    Article  Google Scholar 

  29. Kundzewicz, Z. W. et al. The implications of projected climate change for freshwater resources and their management. Hydrol. Sci. J. 53, 3–10 (2008).

    Article  Google Scholar 

  30. Carey, M. et al. Impacts of glacier recession and declining meltwater on mountain societies. Ann. Am. Assoc. Geogr. 107, 350–359 (2017).

    Google Scholar 

  31. Arendt, A. et al. Randolph Glacier Inventory—a dataset of global glacier outlines: Version 4.0 Global Land Ice Measurements from Space (Digital Media, 2014).

  32. Jarvis, J., Reuter, H., Nelson, A. & Guevara, E. SRTM 90m Digital Elevation Data Version 4 (CGIAR-CSI, 2008);

  33. Tachikawa, T., Hato, M., Kaku, M. & Iwasaki, A. Characteristics of ASTER GDEM version 2 Geoscience and Remote Sensing Symposium (IGARSS) 3657–3660 (IEEE, New York, 2011).

  34. Huss, M. & Farinotti, D. Distributed ice thickness and volume of all glaciers around the globe. J. Geophys. Res. 117, F04010 (2012).

    Article  Google Scholar 

  35. Major River Basins of the World (Global Runoff Data Centre, 2007);

  36. Long-Term Mean Monthly Discharges and Annual Characteristics of GRDC Stations (Global Runoff Data Centre, accessed 17 July 2016).

  37. Fekete, B., Vörösmarty, C. & Grabs, W. High-resolution fields of global runoff combining observed river discharge and simulated water balances. Glob. Biogeochem. Cycles 16, 15-1–15-10 (2002).

    Article  Google Scholar 

  38. Fekete, B. & Vörösmarty, C. ISLSCP II UNH/GRDC Composite Monthly Runoff (2011);

  39. Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  40. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An Overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  41. Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from1765 to 2300. Clim. Chang. 109, 213–241 (2011).

    Article  CAS  Google Scholar 

  42. Cogley, J. et al. Glossary of Glacier Mass Balance and Related Terms Technical Documents in Hydrology No. 86 (IACS, 2011).

  43. Oerlemans, J. & Nick, F. M. A minimal model of a tidewater glacier. Ann. Glaciol. 42, 1–6 (2005).

    Article  Google Scholar 

  44. Huss, M., Jouvet, G., Farinotti, D. & Bauder, A. Future high-mountain hydrology: a new parameterization of glacier retreat. Hydrol. Earth Syst. Sci. 14, 815–829 (2010).

    Article  Google Scholar 

  45. Gardner, A. S. et al. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340, 852–857 (2013).

    Article  CAS  Google Scholar 

  46. WGMS. Fluctuations of Glaciers, 2005–2010 Vol. 10 (World Glacier Monitoring Service, 2012).

  47. Nieuwenhuyse, E. V. Empirical model for predicting a catchment-scale metric of surface water transit time in streams. Can. J. Fish. Aquat. Sci. 62, 492–504 (2005).

    Article  Google Scholar 

  48. Milly, P. C. D., Dunne, K. A. & Vecchia, A. V. Global pattern of trends in streamflow and water availability in a changing climate. Nature 438, 347–350 (2005).

    Article  CAS  Google Scholar 

  49. Piao, S. et al. Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. Proc. Natl Acad. Sci. USA 104, 15242–15247 (2007).

    Article  CAS  Google Scholar 

  50. Gabbi, J., Farinotti, D., Bauder, A. & Maurer, H. Ice volume distribution and implications on runoff projections in a glacierized catchment. Hydrol. Earth Syst. Sci. 16, 4543–4556 (2012).

    Article  Google Scholar 

  51. Farinotti, D. et al. How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment. Cryosphere 11, 949–970 (2017).

    Article  Google Scholar 

  52. Bahr, D. B., Meier, M. F. & Peckham, S. D. The physical basis of glacier volume-area scaling. J. Geophys. Res. 102, 20355–20362 (1997).

    Article  CAS  Google Scholar 

Download references


We thank the Randolph Glacier Inventory consortium for providing global glacier inventory data, the European Centre for Medium-range Weather Forecasts for the ERA-interim Reanalysis and the GRDC for discharge data and drainage-basin outlines. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups (listed in Supplementary Table 2) for producing and making available their model output. R.H acknowledges funding from grants from the National Aeronautics and Space Administration (NNX17AB27G and NNX11AO23G). A. Aschwanden, D. Farinotti, A. Johnsson, D. Rounce and M. Truffer commented on a previous version of the manuscript.

Author information

Authors and Affiliations



M.H. gathered and prepared the data, performed all the calculations and made the figures. He developed the model and modelling procedure with input from R.H. M.H. and R.H. contributed to the development of the analyses and figures and the discussion of results, and shared the writing of the paper.

Corresponding author

Correspondence to Matthias Huss.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Supplementary Figures 1–9 and Supplementary Tables 1–6 and Supplementary References

Supplementary Data

16 Supplementary Data Files

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huss, M., Hock, R. Global-scale hydrological response to future glacier mass loss. Nature Clim Change 8, 135–140 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing