Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

How to spend a dwindling greenhouse gas budget

The Paris Agreement is based on emission scenarios that move from a sluggish phase-out of fossil fuels to large-scale late-century negative emissions. Alternative pathways of early deployment of negative emission technologies need to be considered to ensure that climate targets are reached safely and sustainably.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Four archetypes of emission pathways leading to a 2 °C warming target with peak emissions in 2020.
Fig. 2: The new archetypes Minimize CDR and No Overshoot are benchmarked against prevailing archetypes Rapid Decarbonization and Late-Century CDR, based on results from our own model calculations presented in the supplementary material.

References

  1. Tollefson, J. Nature 527, 436 (2015).

    Article  CAS  Google Scholar 

  2. Raftery, A. E., Zimmer, A., Frierson, D. M. W., Startz, R. & Liu, P. Nat. Clim. Change 7, 637–641 (2017).

    Article  CAS  Google Scholar 

  3. Riahi, K. et al. Glob. Environ. Change 42, 153–168 (2017).

    Article  Google Scholar 

  4. Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Ch. 6 (IPCC, Cambridge Univ. Press, 2014).

  5. Smith, P. et al. Nat. Clim. Change 6, 42–50 (2016).

    Article  CAS  Google Scholar 

  6. IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team et al.) (Cambrige Univ. Press, 2014).

  7. Fuss, S. et al. Nat. Clim. Change 4, 850–853 (2014).

    Article  CAS  Google Scholar 

  8. Rockström, J. et al. Science 355, 1269–1271 (2017).

    Article  Google Scholar 

  9. Riahi, K. et al. Technol. Forecast. Soc. Change 90, 8–23 (2015).

    Article  Google Scholar 

  10. Popp, A. et al. Glob. Environ. Change 42, 331–345 (2017).

    Article  Google Scholar 

  11. Fritz, S. et al. Glob. Change Biol. 21, 1980–1992 (2015).

    Article  Google Scholar 

  12. Obersteiner, M. et al. Sci. Adv. 2, e1501499 (2016).

    Article  Google Scholar 

  13. Havlik, P. et al. in Climate Change and Food Systems: Global Assessments and Implications for Food Security and Trade (ed. Elbehri, A.) 178–197 (FAO, 2015).

  14. Allen, M. R. Nat. Clim. Change 6, 684–686 (2016).

    Article  Google Scholar 

  15. MacDougall, A. H., Zickfeld, K., Knutti, R. & Matthews, H. D. Environ. Res. Lett. 10, 125003 (2015).

    Article  Google Scholar 

  16. Peñuelas, J. et al. Nat. Ecol. Evol. 1, 1438–1445 (2017).

    Article  Google Scholar 

  17. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration (National Academies Press, 2015).

  18. Hotelling, H. J. Polit. Econ. 39, 137–175 (1931).

    Article  Google Scholar 

  19. Obersteiner, M. et al. Science 294, 786–787 (2001).

    Article  CAS  Google Scholar 

  20. Lemoine, D. M., Fuss, S., Szolgayova, J., Obersteiner, M. & Kammen, D. M. Climatic Change 113, 141–162 (2012).

    Article  CAS  Google Scholar 

  21. Searchinger, T. D. et al. Science 326, 527–528 (2009).

    Article  CAS  Google Scholar 

  22. Gren, I.-M. & Aklilu, A. Z. For. Policy Econ. 70, 128–136 (2016).

    Article  Google Scholar 

  23. Rogelj, J. et al. Nat. Clim. Change 6, 245–252 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the European Research Council Synergy grant ERC-SyG-2013-610028 IMBALANCE-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Obersteiner.

Supplementary information

Supplementary Information

Supplementary Figures 1–4, Supplementary Note and Supplementary References.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obersteiner, M., Bednar, J., Wagner, F. et al. How to spend a dwindling greenhouse gas budget. Nature Clim Change 8, 7–10 (2018). https://doi.org/10.1038/s41558-017-0045-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-017-0045-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing