Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Elevated increases in human-perceived temperature under climate warming


Changes in air temperature (AT), humidity and wind speed (Wind) affect apparent temperature (AP), the human-perceived equivalent temperature1,2,3. Here we show that under climate warming, both reanalysis data sets and Global Climate Model simulations indicate that AP has increased faster than AT over land. The faster increase in AP has been especially significant over low latitudes and is expected to continue in the future. The global land average AP increased at 0.04 °C per decade faster than AT before 2005. This trend is projected to increase to 0.06 °C (0.03–0.09 °C; minimum and maximum of the ensemble members) per decade and 0.17 °C (0.12–0.25 °C) per decade under the Representative Concentration Pathway 4.5 scenario (RCP4.5) and RCP8.5, respectively, and reduce to 0.02 °C (0–0.03 °C) per decade under RCP2.6 over 2006–2100. The higher increment in AP in summer daytime is more remarkable than in winter night-time and is most prominent over low latitudes. The summertime increases in AT-based thermal discomfort are projected to balance the wintertime decreases in AT-based discomfort over low and middle latitudes, while the summertime increases in AP-based thermal discomfort are expected to outpace the wintertime decreases in AP-based thermal discomfort. Effective climate change mitigation efforts to achieve RCP2.6 can considerably alleviate the faster increase in AP.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Faster increases in AP than AT.
Fig. 2: Projections of summer and winter ∆(AP–AT) (°C) under future scenarios (2081–2100) relative to the historical scenario (1981–2000).
Fig. 3: Projected changes in the degree of thermal discomfort TDC (°C) and frequency of extremely hot days and extremely cold nights as a whole ∆f h+c (day) under future scenarios (2081–2100) relative to the historical scenario (1981–2000).
Fig. 4: Contributions of climatic factors to changes in daytime AP in 2081–2100 under RCP4.5 relative to 1981–2000.


  1. 1.

    Steadman, R. G. Norms of apparent temperature in Australia. Aust. Met. Mag. 43, 1–16 (1994).

    Google Scholar 

  2. 2.

    Gaffen, D. J. & Ross, R. J. Climatology and trends of U.S. surface humidity and temperature. J. Clim. 12, 811–828 (1999).

    Article  Google Scholar 

  3. 3.

    Tikuisis, P. & Osczevski, R. J. Facial cooling during cold air exposure. Bull. Am. Meteor. Soc. 84, 927–933 (2003).

    Article  Google Scholar 

  4. 4.

    Delworth, T. L., Mahlman, J. D. & Knutson, T. R. Changes in heat index associated with CO2-induced global warming. Climatic Change 43, 369–386 (1999).

    CAS  Article  Google Scholar 

  5. 5.

    Steadman, R. G. The assessment of sultriness. Part I: A temperature–humidity index based on human physiology and clothing science. J. Appl. Meteorol. 18, 861–873 (1979).

    Article  Google Scholar 

  6. 6.

    Robinson, P. J. On the definition of heat wave. J. Appl. Meteorol. 40, 762–775 (2001).

    Article  Google Scholar 

  7. 7.

    Gill, J. S., Davies, P., Gill, S. K. & Beevers, D. G. Wind-chill and the seasonal variation of cerebrovascular disease. J. Clin. Epidemiol. 41, 225–230 (1988).

    CAS  Article  Google Scholar 

  8. 8.

    Mora, C. Global risk of deadly heat. Nat. Clim. Change 7, 501–506 (2017).

    Article  Google Scholar 

  9. 9.

    Dunne, J. P., Stouffer, R. J. & John, J. R. Reductions in labour capacity from heat stress under climate warming. Nat. Clim. Change 3, 563–566 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    Fischer, E. M. & Knutti, R. Robust projections of combined humidity and temperature extremes. Nat. Clim. Change 3, 126–130 (2013).

    Article  Google Scholar 

  11. 11.

    Curriero, F. C. et al. Temperature and mortality in 11 cities of the Eastern United States. Am. J. Epidemiol. 155, 80–87 (2002).

    Article  Google Scholar 

  12. 12.

    Gasparrini, A. et al. Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet 386, 369–375 (2015).

    Article  Google Scholar 

  13. 13.

    McMichael, A. J. et al. Human Health and Climate Change in Oceania: A Risk Assessment (Commonwealth Department of Health and Ageing, Canberra, 2003).

    Google Scholar 

  14. 14.

    Huang, C. et al. Projecting future heat-related mortality under climate change scenarios: a systematic review. Environ. Health Perspect. 119, 1681–1690 (2011).

    Article  Google Scholar 

  15. 15.

    Ebi, K. L. & Mills, D. Winter mortality in a warming climate: a reassessment. WIREs Clim. Change 4, 203–212 (2013).

    Article  Google Scholar 

  16. 16.

    Huber, V., Ibarreta, D. & Frieler, K. Cold- and heat-related mortality: a cautionary note on current damage functions with net benefits from climate change. Climatic Change 142, 407–418 (2017).

    Article  Google Scholar 

  17. 17.

    Steadman, R. G. A universal scale of apparent temperature. J. Clim. Appl. Meteorol. 23, 1674–1984 (1984).

    Article  Google Scholar 

  18. 18.

    Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  19. 19.

    Uppala, S. M. The ERA-40 re-analysis. Q. J. R. Meteorol. Soc. 131, 2961–3012 (2005).

    Article  Google Scholar 

  20. 20.

    Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–471 (1996).

    Article  Google Scholar 

  21. 21.

    Kanamitsu, M. et al. NCEP-DOE AMIP-II reanalysis (R-2). Bull. Am. Meteorol. Soc. 83, 1631–1643 (2002).

    Article  Google Scholar 

  22. 22.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  23. 23.

    Serreze, M. C. & Barry, R. G. Processes and impacts of Arctic amplification: a research synthesis. Glob. Planet. Change 77, 85–96 (2011).

    Article  Google Scholar 

  24. 24.

    Willett, K. M., Gillet, N. P., Jones, P. D. & Thorne, P. W. Attribution of observed surface humidity changes to human influence. Nature 449, 710–713 (2007).

    CAS  Article  Google Scholar 

  25. 25.

    Fischer, E. M. & Schär, C. Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci. 3, 398–403 (2010).

    CAS  Article  Google Scholar 

  26. 26.

    Diffenbaugh, N. S. & Giorgi, F. Climate change hotspots in the CMIP5 global climate model ensemble. Climatic Change 114, 813–822 (1999).

    Article  Google Scholar 

  27. 27.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

    Google Scholar 

  28. 28.

    Rothfusz, L. P. The Heat Index Equation (or, More Than You Ever Wanted to Know About Heat Index). National Weather Service Technical Attachment (SR90-23) (NWS, Fort Worth, TX, 1990).

    Google Scholar 

  29. 29.

    Buck, A. L. New equations for computing vapor pressure and enhancement factor. J. Appl. Meteorol. 20, 1527–1532 (1981).

    Article  Google Scholar 

  30. 30.

    Wanielista, M., Kersten, R. & Eaglin, R. Hydrology: Water Quantity and Quality Control (Wiley, Toronto, 1997).

    Google Scholar 

  31. 31.

    Osczevski, R. & Bluestein, M. The new wind chill equivalent temperature chart. Bull. Am. Meteor. Soc. 86, 1453–1458 (2005).

    Article  Google Scholar 

  32. 32.

    Sillmann, J., Kharin, V. V., Zhang, X., Zwiers, F. W. & Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos. 118, 1716–1733 (2013).

    Article  Google Scholar 

  33. 33.

    Hamed, A. F. & Rao, A. R. A modified Mann–Kendall trend test for autocorrelated data. J. Hydrol. 204, 182–196 (1998).

    Article  Google Scholar 

  34. 34.

    Snedecor, G. W. & Cochran, W. G. Statistical Methods. 8th edn (Iowa State Univ. Press, Iowa City, 1989).

    Google Scholar 

Download references


The authors acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and acknowledge the climate modelling groups for developing and making available their model output. For CMIP5, the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. The work described in this Letter was supported by the Research Grants Council of the Hong Kong Special Administrative Region, China (project no. HKBU22301916) and a Direct Grant of The Chinese University of Hong Kong (project no. 4052134).

Author information




J.L. and Y.D.C. designed the study. J.L. conducted the analysis. J.L., Y.D.C., T.Y.G. and N.-C.L. discussed the results and jointly wrote the paper.

Corresponding author

Correspondence to Yongqin David Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussions 1–8, Supplementary Figures 1–45, Supplementary Methods, Supplementary Table 1, Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, J., Chen, Y.D., Gan, T.Y. et al. Elevated increases in human-perceived temperature under climate warming. Nature Clim Change 8, 43–47 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing