Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reduced feeding activity of soil detritivores under warmer and drier conditions

Abstract

Anthropogenic warming is projected to trigger positive feedbacks to climate by enhancing carbon losses from the soil1. While such losses are, in part, due to increased decomposition of organic matter by invertebrate detritivores, it is unknown how detritivore feeding activity will change with warming2, especially under drought conditions. Here, using four-year manipulation experiments in two North American boreal forests, we investigate how temperature (ambient, ambient + 1.7 °C and ambient + 3.4 °C) and rainfall (ambient and –40% of the summer precipitation) perturbations influence detritivore feeding activity. In contrast to general expectations1,3, warming had negligible net effects on detritivore feeding activity at ambient precipitation. However, when combined with precipitation reductions, warming decreased feeding activity by ~14%. Across all plots and dates, detritivore feeding activity was positively associated with bulk soil microbial respiration. These results suggest slower rates of decomposition of soil organic matter and thus reduced positive feedbacks to climate under anthropogenic climate change.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Soil detritivore feeding activity in response to experiment warming and reduced precipitation.
Fig. 2: Interactive effects of soil temperature and soil water content on the feeding activity of soil detritivores.

References

  1. 1.

    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

    CAS  Article  Google Scholar 

  2. 2.

    Bradford, M. A. et al. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Change 6, 751–758 (2016).

    Article  Google Scholar 

  3. 3.

    Crowther, T. et al. Quantifying global soil C losses in response to warming. Nature 540, 104–108 (2016).

    CAS  Article  Google Scholar 

  4. 4.

    Adl, S. The Ecology of Soil Decomposition (CABI Publishing, Trowbridge, 2003).

  5. 5.

    Wolters, V. Invertebrate control of soil organic matter stability. Biol. Fertil. Soils 31, 1–19 (2000).

    CAS  Article  Google Scholar 

  6. 6.

    Prescott, C. E. Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101, 133–149 (2010).

    CAS  Article  Google Scholar 

  7. 7.

    Six, J., Conant, R. T., Paul, E. A. & Paustian, K. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241, 155–176 (2002).

    CAS  Article  Google Scholar 

  8. 8.

    Jastrow, J. D., Amonette, J. E. & Bailey, V. L. Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Clim. Change 80, 5–23 (2007).

    CAS  Article  Google Scholar 

  9. 9.

    Verhoef, H. & Brussaard, L. Decomposition and nitrogen mineralization in natural and agroecosystems: the contribution of soil animals. Biogeochemistry 11, 175–211 (1990).

    Article  Google Scholar 

  10. 10.

    Seastedt, T. The role of microarthropods in decomposition and mineralization processes. Annu. Rev. Entomol. 29, 25–46 (1984).

    Article  Google Scholar 

  11. 11.

    Pries, C. E. H., Castanha, C., Porras, R. & Torn, M. S. The whole-soil carbon flux in response to warming. Science 355, 1420–1423 (2017).

    Article  Google Scholar 

  12. 12.

    Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).

    CAS  Article  Google Scholar 

  13. 13.

    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).

    CAS  Article  Google Scholar 

  14. 14.

    Tucker, C. L., Bell, J., Pendall, E. & Ogle, K. Does declining carbon-use efficiency explain thermal acclimation of soil respiration with warming? Glob. Change Biol. 19, 252–263 (2013).

    Article  Google Scholar 

  15. 15.

    Bradford, M. A. Thermal adaptation of decomposer communities in warming soils. Front. Microbiol. 4, 1–16 (2013).

    Article  Google Scholar 

  16. 16.

    Crowther, T. W. & Bradford, M. A. Thermal acclimation in widespread heterotrophic soil microbes. Ecol. Lett. 16, 469–477 (2013).

    Article  Google Scholar 

  17. 17.

    Melillo, J. M. et al. Soil warming and carbon-cycle feedbacks to the climate system. Science 298, 2173–2176 (2002).

    CAS  Article  Google Scholar 

  18. 18.

    Luo, Y., Wan, S., Hui, D. & Wallace, L. L. Acclimatization of soil respiration to warming in a tall grass prairie. Nature 413, 622–625 (2001).

    CAS  Article  Google Scholar 

  19. 19.

    Sihi, D., Inglett, P., Gerber, S. & Inglett, K. Rate of warming affects temperature sensitivity of anaerobic peat decomposition and greenhouse gas production. Glob. Change Biol. http://dx.doi.org/10.1111/gcb.13839 (2017).

  20. 20.

    Sinsabaugh, R. L., Manzoni, S., Moorhead, D. L. & Richter, A. Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecol. Lett. 16, 930–939 (2013).

    Article  Google Scholar 

  21. 21.

    Hagerty, S. B. et al. Accelerated microbial turnover but constant growth efficiency with warming in soil. Nat. Clim. Change 4, 903–906 (2014).

    CAS  Article  Google Scholar 

  22. 22.

    Frey, S. D., Lee, J., Melillo, J. M. & Six, J. The temperature response of soil microbial efficiency and its feedback to climate. Nat. Clim. Change 3, 395–398 (2013).

    CAS  Article  Google Scholar 

  23. 23.

    Lang, B., Rall, B. C. & Brose, U. Warming effects on consumption and intraspecific interference competition depend on predator metabolism. J. Anim. Ecol. 81, 516–523 (2012).

    Article  Google Scholar 

  24. 24.

    A’Bear, A. D., Boddy, L. & Hefin Jones, T. Impacts of elevated temperature on the growth and functioning of decomposer fungi are influenced by grazing collembola. Glob. Change Biol. 18, 1823–1832 (2012).

    Article  Google Scholar 

  25. 25.

    Eliasson, P. E. et al. The response of heterotrophic CO2 flux to soil warming. Glob. Change Biol. 11, 167–181 (2005).

    Article  Google Scholar 

  26. 26.

    Conant, R. T. et al. Temperature and soil organic matter decomposition rates—synthesis of current knowledge and a way forward. Glob. Change Biol. 17, 3392–3404 (2011).

    Article  Google Scholar 

  27. 27.

    Kirschbaum, M. Soil respiration under prolonged soil warming: are rate reductions caused by acclimation or substrate loss? Glob. Change Biol. 10, 1870–1877 (2004).

    Article  Google Scholar 

  28. 28.

    Allison, S. D. & Treseder, K. K. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Glob. Change Biol. 14, 2898–2909 (2008).

    Article  Google Scholar 

  29. 29.

    IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team et al.) (IPCC, 2014). 

  30. 30.

    Schindlbacher, A. et al. Soil respiration under climate change: prolonged summer drought offsets soil warming effects. Glob. Change Biol. 18, 2270–2279 (2012).

    Article  Google Scholar 

  31. 31.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2014).

  32. 32.

    Rich, R. et al. Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment. Glob. Change Biol. 21, 2334–2348 (2015).

    Article  Google Scholar 

  33. 33.

    Von Torne, E. Assessing feeding activities of soil-living animals. I. Bait-lamina-tests. Pedobiologia 34, 89–101 (1990).

    Google Scholar 

  34. 34.

    Rall, B. C. et al. Universal temperature and body-mass scaling of feeding rates. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 2923–2934 (2012).

    Article  Google Scholar 

  35. 35.

    Lindberg, N., Engtsson, J. B. & Persson, T. Effects of experimental irrigation and drought on the composition and diversity of soil fauna in a coniferous stand. J. Appl. Ecol. 39, 924–936 (2002).

    Article  Google Scholar 

  36. 36.

    Staley, J. T. et al. Effects of summer rainfall manipulations on the abundance and vertical distribution of herbivorous soil macro-invertebrates. Eur. J. Soil Biol. 43, 189–198 (2007).

    Article  Google Scholar 

  37. 37.

    Eisenhauer, N. et al. Warming shifts ‘worming’: effects of experimental warming on invasive earthworms in northern North America. Sci. Rep. 4, 6890 (2014).

    CAS  Article  Google Scholar 

  38. 38.

    Vasseur, D. A. & McCann, K. S. A mechanistic approach for modeling temperature-dependent consumer-resource dynamics. Am. Nat. 166, 184–198 (2005).

    Article  Google Scholar 

  39. 39.

    Brown, J., Gillooly, J., Allen, A. & Savage, V. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article  Google Scholar 

  40. 40.

    Lang, B., Rall, B. C., Scheu, S. & Brose, U. Effects of environmental warming and drought on size-structured soil food webs. Oikos 123, 1224–1233 (2013).

    Article  Google Scholar 

  41. 41.

    Gongalsky, K. B., Persson, T. & Pokarzhevskii, A. D. Effects of soil temperature and moisture on the feeding activity of soil animals as determined by the bait-lamina test. Appl. Soil Ecol. 39, 84–90 (2008).

    Article  Google Scholar 

  42. 42.

    Davidson, E. A., Trumbore, S. E. & Amundson, R. Soil warming and organic carbon content. Nature 408, 789–790 (2000).

    CAS  Article  Google Scholar 

  43. 43.

    Bond-Lamberty, B. & Thomson, A. Temperature-associated increases in the global soil respiration record. Nature 464, 579–582 (2010).

    CAS  Article  Google Scholar 

  44. 44.

    Gauthier, S., Bernier, P., Kuuluvainen, T., Shvidenko, A. Z. & Schepaschenko, D. G. Boreal forest health and global change. Science 349, 819–822 (2015).

    CAS  Article  Google Scholar 

  45. 45.

    Schindlbacher, A., Jandl, R. & Schindlbacher, S. Natural variations in snow cover do not affect the annual soil CO2 efflux from a mid-elevation temperate forest. Glob. Change Biol. 20, 622–632 (2014).

    Article  Google Scholar 

  46. 46.

    Gelman, A. & Yu-Sung, S. arm: Data Analysis Using Regression and Multilevel/Hierarchical Models. R Package v.1.8-6 (2015).

  47. 47.

    Reich, P. B. et al. Geographic range predicts photosynthetic and growth response to warming in co-occurring tree species. Nat. Clim. Change 5, 148–152 (2015).

    CAS  Article  Google Scholar 

  48. 48.

    Eisenhauer, N. et al. Organic textile dye improves the visual assessment of the bait-lamina test. Appl. Soil Ecol. 82, 78–81 (2014).

    Article  Google Scholar 

  49. 49.

    Riutta, T., Clack, H., Crockatt, M. & Slade, E. M. Landscape-scale implications of the edge effect on soil fauna activity in a temperate forest. Ecosystems 19, 534–544 (2016).

    Article  Google Scholar 

  50. 50.

    Simpson, J. E., Slade, E., Riutta, T. & Taylor, M. E. Factors affecting soil fauna feeding activity in a fragmented lowland temperate deciduous woodland. PLoS ONE 7, e29616 (2012).

    CAS  Article  Google Scholar 

  51. 51.

    Birkhofer, K. et al. Soil fauna feeding activity in temperate grassland soils increases with legume and grass species richness. Soil Biol. Biochem. 43, 2200–2207 (2011).

    CAS  Article  Google Scholar 

  52. 52.

    Bates, D., Maechler, M., Bolker, B. M. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  53. 53.

    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest: Tests in Linear Mixed Effects Models. R Package v.2.0-33 (2016).

    Article  Google Scholar 

  54. 54.

    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).

    Article  Google Scholar 

  55. 55.

    Wood, S. N. Generalized Additive Models: an Introduction with R (Chapman and Hall, Boca Raton, USA, CRC, 2006).

  56. 56.

    Wood, S. & Scheipl, F. gamm4: Generalized Additive Mixed Models Using ‘mgcv’ and ‘lme4’. R Package v.0.2-3 (2014).

  57. 57.

    Van Rij, J. & Wieling, M. itsadug: Interpreting Time Series and Autocorrelated Data Using GAMMs. R Package v.2.2 (2016).

  58. 58.

    R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014).

Download references

Acknowledgements

We gratefully acknowledge several interns who spent innumerable hours in the field assessing bait lamina strips. We are thankful to S. Zieger and J. Siebert for providing the images of detritivores and bait lamina strips, respectively. M.P.T. and N.E. acknowledge funding by the Deutsche Forschungsgemeinschaft in the frame of the Emmy Noether research group (Ei 862/2). This project also received support from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 677232). Further support came from the German Centre for Integrative Biodiversity Research Halle–Jena–Leipzig, funded by the German Research Foundation (FZT 118). The B4WarmED project is funded by the US Department of Energy (Grant number DE-FG02-07ER64456) and the College of Food, Agricultural and Natural Resource Sciences at the University of Minnesota.

Author information

Affiliations

Authors

Contributions

P.B.R. and S.E.H. conceived the B4WarmED experiment. N.E. conceived the study of soil detritivore feeding activity. A.S., R.R., K.E.R. and W.C.E. collected the data. M.P.T. developed the ideas for this manuscript, analysed the data and wrote the manuscript with substantial input from N.E. and P.B.R. All authors contributed to revisions.

Corresponding author

Correspondence to Madhav P. Thakur.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–12 and Supplementary Table 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thakur, M.P., Reich, P.B., Hobbie, S.E. et al. Reduced feeding activity of soil detritivores under warmer and drier conditions. Nature Clim Change 8, 75–78 (2018). https://doi.org/10.1038/s41558-017-0032-6

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing