The far reach of ice-shelf thinning in Antarctica


Floating ice shelves, which fringe most of Antarctica’s coastline, regulate ice flow into the Southern Ocean1,2,3. Their thinning4,5,6,7 or disintegration8,9 can cause upstream acceleration of grounded ice and raise global sea levels. So far the effect has not been quantified in a comprehensive and spatially explicit manner. Here, using a finite-element model, we diagnose the immediate, continent-wide flux response to different spatial patterns of ice-shelf mass loss. We show that highly localized ice-shelf thinning can reach across the entire shelf and accelerate ice flow in regions far from the initial perturbation. As an example, this ‘tele-buttressing’ enhances outflow from Bindschadler Ice Stream in response to thinning near Ross Island more than 900 km away. We further find that the integrated flux response across all grounding lines is highly dependent on the location of imposed changes: the strongest response is caused not only near ice streams and ice rises, but also by thinning, for instance, well-within the Filchner–Ronne and Ross Ice Shelves. The most critical regions in all major ice shelves are often located in regions easily accessible to the intrusion of warm ocean waters10,11,12, stressing Antarctica’s vulnerability to changes in its surrounding ocean.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Buttressing flux response numbers (θ B) for Antarctic ice shelves.
Fig. 2: Examples of changes in speed resulting from 1 m thinning.
Fig. 3: Tele-buttressing.


  1. 1.

    Thomas, R. H. The creep of ice shelves: interpretation of observed behaviour. J. Glaciol. 12, 55–70 (1973).

    Article  Google Scholar 

  2. 2.

    Hughes, T. Is the west Antarctic Ice Sheet disintegrating? J. Geophys. Res. 78, 7884–7910 (1973).

    Article  Google Scholar 

  3. 3.

    Dupont, T. K. & Alley, R. B. Assessment of the importance of ice-shelf buttressing to ice-sheet flow. Geophys. Res. Lett. 32, L04503 (2005).

    Article  Google Scholar 

  4. 4.

    Paolo, F. S., Fricker, H. A. & Padman, L. Volume loss from Antarctic ice shelves is accelerating. Science 348, 327–331 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    Bindschadler, R. A. Hitting the ice sheets where it hurts. Science 311, 1720–1721 (2006).

    CAS  Article  Google Scholar 

  6. 6.

    Pritchard, H. D. et al. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484, 502–505 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    Wouters, B. et al. Dynamic thinning of glaciers on the Southern Antarctic Peninsula. Science 348, 899–903 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    Rott, H., Rack, W., Skvarca, P. & De Angelis, H. Northern Larsen Ice Shelf, Antarctica: further retreat after collapse. Ann. Glaciol. 34, 277–282 (2002).

    Article  Google Scholar 

  9. 9.

    De Angelis, H. & Skvarca, P. Glacier surge after ice shelf collapse. Science 299, 1560–1562 (2003).

    Article  Google Scholar 

  10. 10.

    Hellmer, H. H., Kauker, F., Timmermann, R., Determann, J. & Rae, J. Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal current. Nature 485, 225–228 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    Rignot, E., Jacobs, S., Mouginot, J. & Scheuchl, B. Ice-shelf melting around Antarctica. Science 341, 266–270 (2013).

    CAS  Article  Google Scholar 

  12. 12.

    Dutrieux, P. et al. Strong sensitivity of Pine Island ice-shelf melting to climatic variability. Science 343, 174–178 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    Church, J. A. et al. in Climate Change 2013: The Physical Science Basis. Ch. 13 (eds Stocker, T. F. et al.) 1137–1216 (Cambridge Univ. Press, Cambridge, UK, 2013).

  14. 14.

    Mercer, J. H. West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster. Nature 271, 321–325 (1978).

    Article  Google Scholar 

  15. 15.

    Bindschadler, R. A. et al. Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project). J. Glaciol. 59, 195–224 (2013).

    Article  Google Scholar 

  16. 16.

    Nowicki, S. et al. Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project I: Antarctica. J. Geophys. Res. 118, 1002–1024 (2013).

    Article  Google Scholar 

  17. 17.

    Levermann, A. et al. Projecting Antarctic ice discharge using response functions from SeaRISE ice-sheet models. Earth Syst. Dyn. 5, 271–293 (2014).

    Article  Google Scholar 

  18. 18.

    Lenaerts, J. T. M. et al. Meltwater produced by wind–albedo interaction stored in an East Antarctic ice shelf. Nat. Clim. Change 7, 58–62 (2016).

    Article  Google Scholar 

  19. 19.

    Depoorter, M. A. et al. Calving fluxes and basal melt rates of Antarctic ice shelves. Nature 502, 89–92 (2013).

    CAS  Article  Google Scholar 

  20. 20.

    Holland, D. M., Thomas, R. H., de Young, B., Ribergaard, M. H. & Lyberth, B. Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nat. Geosci. 1, 659–664 (2008).

    CAS  Article  Google Scholar 

  21. 21.

    Fürst, J. J. et al. Assimilation of Antarctic velocity observations provides evidence for uncharted pinning points. Cryosphere 9, 1427–1443 (2015).

    Article  Google Scholar 

  22. 22.

    Fürst, J. J. et al. The safety band of Antarctic ice shelves. Nat. Clim. Change 6, 479–482 (2016).

    Article  Google Scholar 

  23. 23.

    Gudmundsson, G. H., Krug, J., Durand, G., Favier, L. & Gagliardini, O. The stability of grounding lines on retrograde slopes. Cryosphere 6, 1497–1505 (2012).

    Article  Google Scholar 

  24. 24.

    Goldberg, D., Holland, D. M. & Schoof, C. Grounding line movement and ice shelf buttressing in marine ice sheets. J. Geophys. Res. 114, F04026 (2009).

    Article  Google Scholar 

  25. 25.

    Gudmundsson, G. H. Ice-shelf buttressing and the stability of marine ice sheets. Cryosphere 7, 647–655 (2013).

    Article  Google Scholar 

  26. 26.

    Gagliardini, O., Durand, G., Zwinger, T., Hindmarsh, R. C. A. & Le Meur, E. Coupling of ice-shelf melting and buttressing is a key process in ice-sheets dynamics. Geophys. Res. Lett. 37, L14501 (2010).

    Article  Google Scholar 

  27. 27.

    Matsuoka, K. et al. Antarctic ice rises and rumples: their properties and significance for ice-sheet dynamics and evolution. Earth Sci. Rev. 150, 724–745 (2015).

    Article  Google Scholar 

  28. 28.

    Fretwell, P. et al. Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7, 375–393 (2013).

    Article  Google Scholar 

  29. 29.

    Rignot, E., Mouginot, J. & Scheuchl, B. Ice flow of the Antarctic ice sheet. Science 333, 1427–1430 (2011).

    CAS  Article  Google Scholar 

  30. 30.

    Morland, L. Unconfined ice shelf flow. 99–116 Proc. Workshop Dynamics West Antarctic Ice Sheet (eds van der Veen, C. J. & Oerlemans, J.) (Reidel, 1987).

  31. 31.

    MacAyeal, D. R. Large-scale ice flow over a viscous basal sediment: theory and application to ice stream B, Antarctica. J. Geophys. Res. 94, 4071–4087 (1989).

    Article  Google Scholar 

  32. 32.

    Gudmundsson, G. H. Transmission of basal variability to a glacier surface. J. Geophys. Res. 108, 2253 (2003).

    Article  Google Scholar 

  33. 33.

    Weis, M., Greve, R. & Hutter, K. Theory of shallow ice shelves. Contin. Mech. Thermodyn. 11, 15–50 (1999).

    Article  Google Scholar 

  34. 34.

    Schoof, C. Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J. Geophys. Res. 112, F03S28 (2007).

    Article  Google Scholar 

  35. 35.

    Jenkins, A. et al. Decadal ocean forcing and Antarctic ice sheet response: lessons from the Amundsen Sea. Oceanography 29, 106–117 (2016).

    Article  Google Scholar 

  36. 36.

    Turner, J. et al. Atmosphere–ocean–ice interactions in the Amundsen Sea Embayment, West Antarctica. Rev. Geophys. 55, 235–276 (2017).

    Article  Google Scholar 

  37. 37.

    Joughin, I., Smith, B. E. & Medley, B. Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science 334, 735–738 (2014).

    Article  Google Scholar 

  38. 38.

    Favier, L. et al. Retreat of Pine Island Glacier controlled by marine ice-sheet instability. Nat. Clim. Change 4, 117–121 (2014).

    Article  Google Scholar 

  39. 39.

    Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H. & Scheuchl, B. Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophys. Res. Lett. 41, 3502–3509 (2014).

    Article  Google Scholar 

  40. 40.

    Pattyn, F. et al. Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison. J. Glaciol. 59, 410–422 (2013).

    Article  Google Scholar 

  41. 41.

    De Rydt, J., Gudmundsson, G. H., Rott, H. & Bamber, J. L. Modeling the instantaneous response of glaciers after the collapse of the Larsen B Ice Shelf. Geophys. Res. Lett. 42, 5355–5363 (2015).

    Article  Google Scholar 

  42. 42.

    Hutter, K. Theoretical Glaciology: Material Science of Ice and the Mechanics of Glaciers and Ice Sheets (D. Reidel Publishing Company, Tokyo, Terra Scientific Publishing Company, 1983).

  43. 43.

    Geuzaine, C. & Remacle, J.-F. Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79, 1309–1331 (2009).

    Article  Google Scholar 

  44. 44.

    Pattyn, F. et al. Results of the marine ice sheet model intercomparison project, MISMIP. The Cryosphere 6, 573–588 (2012).

    Article  Google Scholar 

  45. 45.

    Lenaerts, J. T. M., van den Broeke, M. R., van de Berg, W. J., van Meijgaard, E. & Kuipers Munneke, P. A new, high-resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophys. Res. Lett. 39, L04501 (2012).

    Article  Google Scholar 

  46. 46.

    Dupont, T. K. & Alley, R. B. Role of small ice shelves in sea-level rise. Geophys. Res. Lett. 33, L09503 (2006).

    Google Scholar 

  47. 47.

    Hindmarsh, R. C. A. The role of membrane-like stresses in determining the stability and sensitivity of the Antarctic ice sheets: back pressure and grounding line motion. Phil. Trans. R. Soc. A 364, 1733–1767 (2006).

    Article  Google Scholar 

  48. 48.

    Weertman, J. Deformation of floating ice shelves. J. Glaciology 3, 38–42 (1957).

    Article  Google Scholar 

Download references


This research has received funding from the Deutsche Forschungsgemeinschaft (DFG) grant number LE 1448/8-1, from COMNAP Antarctic Research Fellowship 2016, the German Academic National Foundation, Evangelisches Studienwerk Villigst and from the NERC NE/L013770 Large Grant ‘Ice shelves in a warming world: Filchner Ice Shelf system, Antarctica’.

Author information




R.R., G.H.G., A.L. and R.W. designed the research and contributed to the analysis. R.W. conceived the study. G.H.G. developed the Úa model and created the Antarctica setup. R.R. carried out the analysis. R.R., G.H.G. and R.W. wrote the manuscript.

Corresponding author

Correspondence to R. Winkelmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figure 1–8, Supplementary Table 1 and Supplementary References.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reese, R., Gudmundsson, G.H., Levermann, A. et al. The far reach of ice-shelf thinning in Antarctica. Nature Clim Change 8, 53–57 (2018).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing