From Pinot to Xinomavro in the world's future wine-growing regions


Predicted impacts of climate change on crops—including yield declines and loss of conservation lands—could be mitigated by exploiting existing diversity within crops. Here we examine this possibility for wine grapes. Across 1,100 planted varieties, wine grapes possess tremendous diversity in traits that affect responses to climate, such as phenology and drought tolerance. Yet little of this diversity is exploited. Instead many countries plant 70–90% of total hectares with the same 12 varieties—representing 1% of total diversity. We outline these challenges, and highlight how altered planting practices and new initiatives could help the industry better adapt to continued climate change.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Current planted diversity of wine grapes.
Fig. 2: Origins of global winegrape production in 2010.
Fig. 3: Growing regions projected temperature change (coloured by quantiles) and estimated varietal restrictions.
Fig. 4: Variation across varieties in two traits relevant for climate change.
Fig. 5: Trait-informed framework for selecting winegrape varieties in different regions under future climate regimes.


  1. 1.

    IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, Cambridge and New York, 2014).

  2. 2.

    Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014). Using a suite of global crop models, shows yield declines with future climate change across many models and regions, though uncertainty remains for mid-latitude regions and depending on nutrient availability, CO 2 and high temperature effects.

    CAS  Article  Google Scholar 

  3. 3.

    Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009).

    CAS  Article  Google Scholar 

  4. 4.

    Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    Nicholas, K. A. & Durham, W. H. Farm-scale adaptation and vulnerability to environmental stresses: Insights from wine-growing in Northern California. Global Environ. Change Human Policy Dimensions 22, 483–494 (2012).

    Article  Google Scholar 

  6. 6.

    Ollat, N., Touzard, J. M. & van Leeuwen, C. Climate change impacts and adaptations: New challenges for the wine industry. J. Wine Econ. 11, 139–149 (2016).

    Article  Google Scholar 

  7. 7.

    Himanen, S. J. et al. Cultivar diversity has great potential to increase yield of feed barley. Agronomy Sust. Dev. 33, 519–530 (2013).

    Article  Google Scholar 

  8. 8.

    Vivier, M. A. & Pretorius, I. S. Genetically tailored grapevines for the wine industry. Trends Biotechnol. 20, 472–478 (2002).

    CAS  Article  Google Scholar 

  9. 9.

    Myles, S. Improving fruit and wine: what does genomics have to offer? Trends Genet. 29, 190–196 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    Collard, B. C. Y. & Mackill, D. J. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil. Trans. R. Soc. B 363, 557–572 (2008).

    CAS  Article  Google Scholar 

  11. 11.

    Ignatov, A. & Bodishevskaya, A. Malus 45–64 (Springer-Verlag Berlin, Heidelberg, 2011).

  12. 12.

    Kahiluoto, H. et al. Cultivating resilience by empirically revealing response diversity. Global Environ. Change Human Policy Dimensions 25, 186–193 (2014).

    Article  Google Scholar 

  13. 13.

    Lipper, L. et al. Climate-smart agriculture for food security. Nat. Clim. Change 4, 1068–1072 (2014).

    Article  Google Scholar 

  14. 14.

    Sehgal, D. et al. Exploring and mobilizing the gene bank biodiversity for wheat improvement. Plos One 10, e0132112 (2015).

  15. 15.

    Gruber, K. Agrobiodiversity the living library. Nature 544, S8–S10 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    Newton, A. C. et al. Cereal landraces for sustainable agriculture. a review. Agronomy Sustain. Dev. 30, 237–269 (2010).

    Article  Google Scholar 

  17. 17.

    Vikram, P. et al. Unlocking the genetic diversity of creole wheats. Sci. Rep. 6, 23092 (2016).

  18. 18.

    Castaneda-Alvarez, N. P. et al. Global conservation priorities for crop wild relatives. Nat. Plants 2, 16022 (2016).

  19. 19.

    Lacombe, T. Contribution à l'étude de l'histoire évolutive de la vigne cultivée (Vitis vinifera L.) par l'analyse de la diversité génétique neutre et de gènes d'intérêt. Doctoral Thesis, Montpellier SupAgro: Centre International d’Etudes Supérieures en Sciences Agronomiques (2012).

  20. 20.

    Galet, P. Dictionnaire Encyclopédique des Cépages et de leur Synonymes (Édition Libres et Solidaire, Paris, 2015).

  21. 21.

    Dûchene, E. How can grapevine genetics contribute to the adaptation to climate change? OENO One 50, 113–124 (2016).

    Article  Google Scholar 

  22. 22.

    Jones, G. V. Climate and terroir: Impacts of climate variability and change on wine. In Geoscience Canada (2003).

  23. 23.

    Gladstones, J. Wine, Terroir and Climate Change (Wakefield Press, Kent Town, South Australia, 2011).

    Google Scholar 

  24. 24.

    van Leeuwen, C. et al. Influence of climate, soil, and cultivar on terroir. Am. J. Enology Viticulture 55, 207–217 (2004).

    Google Scholar 

  25. 25.

    Olmo, H. P. In Evolution of Crop Plants (eds Smartt,  J. et al.) 485–490 (Longman, New York, 1995). 

    Google Scholar 

  26. 26.

    Bouquet, A. 1962-2002: 40 ans de progrès en génétique et sélection. Le Sélectionneur Francais 53, 171–182 (2002).

    Google Scholar 

  27. 27.

    Pelsy, F. Molecular and cellular mechanisms of diversity within grapevine varieties. Heredity 104, 331–340 (2010).

    CAS  Article  Google Scholar 

  28. 28.

    Garnier, E., Daux, V., Yiou, P. & García de Cortázar-Atauri, I. Grapevine harvest dates in Besancon (France) between 1525 and 1847: Social outcomes or climatic evidence? Climatic Change 104, 703–727 (2011).

    Article  Google Scholar 

  29. 29.

    Dûchene, E., Huard, F., Dumas, V., Schneider, C. & Merdinoglu, D. The challenge of adapting grapevine varieties to climate change. Clim. Res. 41, 193–204 (2010).

    Article  Google Scholar 

  30. 30.

    Dry, P. R. & Coombe, B. G. Viticulture Volume 1: Resources 2nd edn (Winetitles, Ashford, South Austalia, 2005).

    Google Scholar 

  31. 31.

    Dûchene, E., Butterlin, G., Dumas, V. & Merdinoglu, D. Towards the adaptation of grapevine varieties to climate change: QTLs and candidate genes for developmental stages. Theoretical Appl. Genet. 124, 623–635 (2012).

    Article  Google Scholar 

  32. 32.

    Grzeskowiak, L., Costantini, L., Lorenzi, S. & Grando, M. S. Candidate loci for phenology and fruitfulness contributing to the phenotypic variability observed in grapevine. Theoretical Appl. Genet. 126, 2763–2776 (2013).

    CAS  Article  Google Scholar 

  33. 33.

    Jones, G. V. In Phenology: An Integrative Environmental Science (ed. Schwartz, M. D.) 563–584 (Springer, Dordrecht, the Netherlands, 2013). Gives an overview of winegrape phenology, its importance to the wine industry, and trends with climate change.

    Google Scholar 

  34. 34.

    Boursiquot, J. M., Dessup, M. & Rennes, C. Distribution des principaux caractères phénologiques, agronomiques et technologiques chez Vitis vinifera L. Vitis 34, 31–35 (1995). Reviews the viticultural ‘potential’ of one major research collection of wine grapes by showing the trait diversity of over 2,000 varieties.

    Google Scholar 

  35. 35.

    Jones, G. V., White, M. A., Cooper, O. R. & Storchmann, K. Climate change and global wine quality. Climatic Change 73, 319–343 (2005).

    Article  Google Scholar 

  36. 36.

    van Leeuwen, C. & Destrac-Irvine, A. Modified grape composition under climate change conditions requires adaptations in the vineyard. OENO One 51, 147–154 (2017). Gives an overview of major changes in winegrape production already seen with climate change, including shifted phenology, lower acidity and higher alcohol content.

    Article  Google Scholar 

  37. 37.

    Jones, G. V. In Grapevine in a Changing Environment: A Molecular and Ecophysiological Perspective (eds Geros, H. et al.) 1–17 (Wiley-Blackwell, 2015).

  38. 38.

    van Leeuwen, C. et al. Why climate change will not dramatically decrease viticultural suitability in main wine-producing areas by 2050. Proc. Natl Acad. Sci. USA 110, E3051–2 (2013).

    Article  Google Scholar 

  39. 39.

    Vitis international variety catalogue (VIVC, accessed on 18 June 2017);

  40. 40.

    Jullien, A. Topograhie de Tous les Vignobles Connus (Librarie d’Agriculture et d’Horticulture, Paris, 1866).

  41. 41.

    Annual Report of the Board of State Viticultural Commissioners: 1880 Report (California Board of State Viticultural Commissioners, 1881).

  42. 42.

    Kerridge, G. H. & Antcliff, A. J. Wine grape varieties (CSIRO, Merbein, Victoria, 1999).

    Google Scholar 

  43. 43.

    Goussard, P. Grape Cultivars for Wine Production in South Africa (Cheviot publishing, Green Point, South Africa, 2008).

    Google Scholar 

  44. 44.

    Tapia, A. M. et al. Determining the Spanish origin of representative ancient American grapevine varieties. Am. J. Enology Viticulture 58, 242–251 (2007).

    CAS  Google Scholar 

  45. 45.

    Coombe, B. G. & Dry, P. R. Viticulture Volume 1: Resources 1st edn (Winetitles, Ashford, South Austalia, 1988).

    Google Scholar 

  46. 46.

    Robinson, J. & Harding, J. The Oxford Companion to Wine 4th edn (Oxford Univ. Press, New York, 2015).

    Google Scholar 

  47. 47.

    Anderson, K. & Aryal, N. R. Which Winegrape Varieties are Grown Where? A Global Empirical Picture (University of Adelaide Press, Adelaide, 2013). Presents compiled data on which winegrape varieties are grown where for regions in 44 countries.

    Google Scholar 

  48. 48.

    Arias, P., Dankers, C., Pascal, L. & Pilkauskas, P. The World Banana Economy: 1985–2002 (Food and agriculture organization of the United Nations, Rome, 2003).

    Google Scholar 

  49. 49.

    Wu, G. A. et al. Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nat. Biotech. 32, 656–662 (2014).

    CAS  Article  Google Scholar 

  50. 50.

    Pinney, T. History of Wine in America, Volume 2: From Prohibition to the Present (University of California Press, Los Angeles, 2005).

    Google Scholar 

  51. 51.

    Robinson, J. Tasting Pleasure: Confessions of a Wine Lover (Penguin, New York, 1999).

    Google Scholar 

  52. 52.

    Bota, J., Tomas, M., Flexas, J., Medrano, H. & Escalona, J. M. Differences among grapevine cultivars in their stomatal behavior and water use efficiency under progressive water stress. Agricultural Water Management 164, 91–99 (2016).

    Article  Google Scholar 

  53. 53.

    Webb, L. B., Whetton, P. & Barlow, E. W. R. Modelled impact of future climate change on the phenology of wine grapes in australia. Aus. J. Grape Wine Res. 13, 165–175 (2007).

    Article  Google Scholar 

  54. 54.

    Hannah, L. et al. Climate change, wine, and conservation. Proc. Natl Acad. Sci. USA 110, 6907–6912 (2013).

    CAS  Article  Google Scholar 

  55. 55.

    Fraga, H., García de Cortázar-Atauri, I., Malheiro, A. C. & Santos, J. A. Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Global Change Biol. 22, 3774–3788 (2016).

    Article  Google Scholar 

  56. 56.

    Parker, A. K., García de Cortázar-Atauri, I., van Leeuwen, C. & Chuine I. General phenological model to characterise the timing of flowering and veraison of Vitis vinifera L. Aus. J. Grape Wine Res. 17, 206–216 (2011).

    Article  Google Scholar 

  57. 57.

    Parker, A. et al. Classification of varieties for their timing of flowering and veraison using a modelling approach: A case study for the grapevine species Vitis vinifera L. Agricult. Forest Meteorol. 180, 249–264 (2013).

    Article  Google Scholar 

  58. 58.

    Maul, E. et al. Identification and characterization of grapevine genetic resources maintained in Eastern European Collections. Vitis 54, 5–12 (2015).

    Google Scholar 

  59. 59.

    van Kleunen, M. & Fischer, M. Constraints on the evolution of adaptive phenotypic plasticity in plants. New Phytol. 166, 49–60 (2005).

    Article  Google Scholar 

  60. 60.

    Aspinwall, M. J. et al. Utilizing intraspecific variation in phenotypic plasticity to bolster agricultural and forest productivity under climate change. Plant Cell Environ. 38, 1752–1764 (2015).

    Article  Google Scholar 

  61. 61.

    Sadras, V. O., Reynolds, M. P., de la Vega, A. J., Petrie, P. R. & Robinson, R. Phenotypic plasticity of yield and phenology in wheat, sunflower and grapevine. Field Crops Res. 110, 242–250 (2009).

    Article  Google Scholar 

  62. 62.

    OIV Descriptor List for Grape Varieties and Vitis Species 2nd edn (Organisation Internationale de la Vigne et du Vin, Paris, 2009).

    Google Scholar 

  63. 63.

    Crop Ontology for Agriculture Data (Crop Ontology Curation Tool, accessed 18 June 2017);

  64. 64.

    Quénol, H. et al. Méthodes d'analyse et de modélisation agro climatique et de changement climatique à l'échelle des terroirs viticoles 39–89 (Lavoisier, Paris, 2014). 

    Google Scholar 

  65. 65.

    Battany, M. Paso Robles Irrigation Monitoring Project. University of California Cooperative Extension: Grape Notes 1–5 (2015).

  66. 66.

    Coumou, D. & Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change 2, 491–496 (2012).

    Google Scholar 

  67. 67.

    Sanchez, B., Rasmussen, A. & Porter, J. R. Temperatures and the growth and development of maize and rice: a review. Glob. Change Biol. 20, 408–417 (2014).

    Article  Google Scholar 

  68. 68.

    Menzel, A., Helm, R. & Zang, C. Patterns of late spring frost leaf damage and recovery in a European beech (Fagus sylvatica L.) stand in south-eastern Germany based on repeated digital photographs. Front. Plant Sci. 6, 110 (2015).

  69. 69.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. et al.) (Cambridge Univ. Press, 2013).

  70. 70.

    Cook, B. I., Smerdon, J. E., Seager, R. & Coats, S. Global warming and 21st century drying. Clim. Dynam. 43, 2607–2627 (2014).

    Article  Google Scholar 

  71. 71.

    Francis, J. A. & Vavrus, S. J. Evidence linking arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett. (2012).

  72. 72.

    Kendon, E. J. et al. Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat. Clim. Change 4, 570–576 (2014).

    Article  Google Scholar 

  73. 73.

    Du, F. et al. Protecting grapevines from rainfall in rainy conditions reduces disease severity and enhances profitability. Crop Protection 67, 261–268 (2015).

    Article  Google Scholar 

  74. 74.

    Coombe, B. G. & Dry, P. R. Viticulture, Volume 2: Practices (Winetitles, Adelaide, South Australia, 1992).

    Google Scholar 

  75. 75.

    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    CAS  Article  Google Scholar 

  76. 76.

    Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).

    Article  Google Scholar 

  77. 77.

    Reich, P. B. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).

    Article  Google Scholar 

  78. 78.

    Messier, J., McGill, B. J. & Lechowicz, M. J. How do traits vary across ecological scales? A case for trait-based ecology. Ecol. Lett. 13, 838–848 (2010).

    Article  Google Scholar 

  79. 79.

    Parent, B. & Tardieu, F. Temperature responses of developmental processes have not been affected by breeding in different ecological areas for 17 crop species. New Phytol. 194, 760–774 (2012). Shows less variation in the temperature responses of lines of three crops (maize, rice and wheat) compared with wild species, suggesting that centuries of crop breeding produce muted change compared to millennia of evolution unassisted by humans.

    Article  Google Scholar 

Download references


Many thanks to C. Marchal and S. Dedet, who helped with data from INRA Domaine de Vassal Grape Collection (France), S. Schaffer-Morrison who helped build the dataset of geolocations of the world’s wine-growing regions, E. Forrestel who helped format the crush report data from California, and to T. J. Davies, whose comments improved the manuscript.

Author information




All authors contributed ideas and edited the manuscript. In addition, E.M.W. wrote the manuscript, T.L. helped with data for Figs. 1,2 and 4. E.M.W. and I.M.-C. designed Figs. 3 and 5 together and EMW designed and produced Figs. 1,2 and 4.

Corresponding author

Correspondence to E. M. Wolkovich.

Ethics declarations

Competing financial interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Materials

Supplementary discussion, Data and methods, Supplementary Figures 1–6, Supplementary References.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wolkovich, E.M., García de Cortázar-Atauri, I., Morales-Castilla, I. et al. From Pinot to Xinomavro in the world's future wine-growing regions. Nature Clim Change 8, 29–37 (2018).

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing