Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A pan-tropical cascade of fire driven by El Niño/Southern Oscillation


The El Niño/Southern Oscillation (ENSO) has a pronounced influence on year-to-year variations in climate1. The response of fires to this forcing2 is complex and has not been evaluated systematically across different continents. Here we use satellite data to create a climatology of burned-area and fire-emissions responses, drawing on six El Niño and six La Niña events during 1997–2016. On average, reductions in precipitation and terrestrial water storage increased fire emissions in pan-tropical forests by 133% during and following El Niño as compared with La Niña. Fires peaked in equatorial Asia early in the ENSO cycle when El Niño was strengthening (Aug–Oct), before moving to southeast Asia and northern South America (Jan–Apr), Central America (Mar–May) and the southern Amazon (Jul–Oct) during the following year. Large decreases in fire occurred across northern Australia during Sep–Oct of the second year from a reduced fuel availability. Satellite observations of aerosols and carbon monoxide provided independent confirmation of the spatiotemporal evolution of fire anomalies. The predictable cascade of fire across different tropical continents described here highlights an important time delay in the Earth system’s response to precipitation redistribution. These observations help to explain why the growth rate of atmospheric CO2 increases during El Niño3 and may contribute to improved seasonal fire forecasts.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Time series of monthly SST anomalies averaged in the Niño3.4 region for the period 1997–2016.
Fig. 2: Multiple tropical regions contribute to the spatial and temporal pattern of fire anomalies during an ENSO event.
Fig. 3
Fig. 4: The cascade in fire impacts from ENSO across tropical land regions.
Fig. 5: Time delays between drought and the fire emissions response during ENSO in tropical regions.


  1. 1.

    McPhaden, M. J., Zebiak, S. E. & Glantz, M. H. ENSO as an integrating concept in Earth science. Science 314, 1740–1745 (2006).

    CAS  Article  Google Scholar 

  2. 2.

    van der Werf, G. R. et al. Continental-scale partitioning of fire emissions during the 1997 to 2001 El Niño/La Niña period. Science 303, 73–76 (2004).

    Article  Google Scholar 

  3. 3.

    Betts, R. A., Jones, C. D., Knight, J. R., Keeling, R. F. & Kennedy, J. J. El Niño and a record CO2 rise. Nat. Clim. Change 6, 806–810 (2016).

    CAS  Article  Google Scholar 

  4. 4.

    Keeling, C. D., Whorf, T. P., Wahlen, M. & Vanderplicht, J. Interannual extremes in the rate of rise of atmospheric carbon-dioxide since 1980. Nature 375, 666–670 (1995).

    CAS  Article  Google Scholar 

  5. 5.

    Bradley, R. S., Diaz, H. F., Kiladis, G. N. & Eischeid, J. K. ENSO signal in continental temperature and precipitation records. Nature 327, 497–501 (1987).

    Article  Google Scholar 

  6. 6.

    Mason, S. J. & Goddard, L. Probabilistic precipitation anomalies associated with ENSO. Bull. Am. Meteorol. Soc. 82, 619–638 (2001).

    Article  Google Scholar 

  7. 7.

    Curtis, S. & Adler, R. F. Evolution of El Niño–precipitation relationships from satellites and gauges. J. Geophys. Res. D 108, 4153 (2003).

    Article  Google Scholar 

  8. 8.

    Chen, Y., Morton, D. C., Andela, N., Giglio, L. & Randerson, J. T. How much global burned area can be forecast on seasonal time scales using sea surface temperatures? Environ. Res. Lett. 11, 045001 (2016).

    Article  Google Scholar 

  9. 9.

    Duffy, P. A., Walsh, J. E., Graham, J. M., Mann, D. H. & Rupp, T. S. Impacts of large-scale atmospheric–ocean variability on Alaskan fire season severity. Ecol. Appl. 15, 1317–1330 (2005).

    Article  Google Scholar 

  10. 10.

    van der Werf, G. R. et al. Climate regulation of fire emissions and deforestation in equatorial Asia. Proc. Natl Acad. Sci. USA 105, 20350–20355 (2008).

    Article  Google Scholar 

  11. 11.

    Chen, Y. et al. Forecasting fire season severity in South America using sea surface temperature anomalies. Science 334, 787–791 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    Andela, N. & van der Werf, G. R. Recent trends in African fires driven by cropland expansion and El Niño to La Niña transition. Nat. Clim. Change 4, 791–795 (2014).

    Article  Google Scholar 

  13. 13.

    Shabbar, A., Skinner, W. & Flannigan, M. D. Prediction of seasonal forest fire severity in Canada from large-scale climate patterns. J. Appl. Meteorol. Clim. 50, 785–799 (2011).

    Article  Google Scholar 

  14. 14.

    Armenteras-Pascual, D. et al. Characterising fire spatial pattern interactions with climate and vegetation in Colombia. Agric. Forest Meteorol. 151, 279–289 (2011).

    Article  Google Scholar 

  15. 15.

    Greenville, A. C., Dickman, C. R., Wardle, G. M. & Letnic, M. The fire history of an arid grassland: the influence of antecedent rainfall and ENSO. Int. J. Wildland Fire 18, 631–639 (2009).

    Article  Google Scholar 

  16. 16.

    Goodrick, S. L. & Hanley, D. E. Florida wildfire activity and atmospheric teleconnections. Int. J. Wildland Fire 18, 476–482 (2009).

    Article  Google Scholar 

  17. 17.

    Changnon, S. A. Impacts of 1997–98 El Niño-generated weather in the United States. Bull. Am. Meteorol. Soc. 80, 1819–1827 (1999).

    Article  Google Scholar 

  18. 18.

    Duncan, B. N. et al. Indonesian wildfires of 1997: impact on tropospheric chemistry. J. Geophys. Res. D 108, 4458 (2003).

    Article  Google Scholar 

  19. 19.

    Randerson, J. T., Chen, Y., van der Werf, G. R., Rogers, B. M. & Morton, D. C. Global burned area and biomass burning emissions from small fires. J. Geophys. Res. G 117, G04012 (2012).

    Google Scholar 

  20. 20.

    Giglio, L., Randerson, J. T. & Van der Werf, G. R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. G 118, 317–328 (2013).

    Article  Google Scholar 

  21. 21.

    van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).

    Article  Google Scholar 

  22. 22.

    Stein, K., Timmermann, A., Schneider, N., Jin, F. F. & Stuecker, M. F. ENSO seasonal synchronization theory. J. Climate 27, 5285–5310 (2014).

    Article  Google Scholar 

  23. 23.

    Wang, C. Z. Atmospheric circulation cells associated with the El Niño–Southern Oscillation. J. Clim. 15, 399–419 (2002).

    CAS  Article  Google Scholar 

  24. 24.

    Chen, Y., Velicogna, I., Famiglietti, J. S. & Randerson, J. T. Satellite observations of terrestrial water storage provide early warning information about drought and fire season severity in the Amazon. J. Geophys. Res. G 118, 495–504 (2013).

    Article  Google Scholar 

  25. 25.

    Nepstad, D. C. et al. The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372, 666–669 (1994).

    CAS  Article  Google Scholar 

  26. 26.

    Spessa, A. C. et al. Seasonal forecasting of fire over Kalimantan, Indonesia. Nat. Hazards Earth Syst. Sci. 15, 429–442 (2015).

    Article  Google Scholar 

  27. 27.

    Kirtman, B. P. et al. The North American multimodel ensemble: phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull. Am. Meteorol. Soc. 95, 585–601 (2014).

    Article  Google Scholar 

  28. 28.

    Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).

    CAS  Article  Google Scholar 

  29. 29.

    Johnston, F. H. et al. Estimated global mortality attributable to smoke from landscape fires. Environ. Health Persp. 120, 695–701 (2012).

  30. 30.

    Collins, M. et al. in Climate Change2013: The Physical Science Basis (eds T. F. Stocker et al.) Ch. 12, 1029–1136 (Cambridge Univ. Press, Cambridge, 2013).

  31. 31.

    Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C. & Wang, W. Q. An improved in situ and satellite SST analysis for climate. J. Clim. 15, 1609–1625 (2002).

    Article  Google Scholar 

  32. 32.

    Giglio, L., Kendall, J. D. & Mack, R. A multi-year active fire dataset for the tropics derived from the TRMM VIRS. Int. J. Remote Sensing 24, 4505–4525 (2003).

    Article  Google Scholar 

  33. 33.

    Arino, O., Rosaz, J.-M. & Goloub, P. The ATSR World Fire Atlas. A synergy with ‘Polder’ aerosol products. Earth Obs. Quart. 64, 1–6 (1999).

Download references


Y.C., N.A. and J.T.R. received funding support from the Gordon and Betty Moore Foundation (GBMF3269). J.T.R. received additional support from NASA’s Terrestrial Hydrology, Interdisciplinary Science and Carbon Monitoring System programs. D.M. was supported by NASA’s Interdisciplinary Science and Carbon Monitoring System Programs. G.v.d.W. was supported by the European Research Center (grant 280061). We thank the NOAA State of the Ocean website, the NASA Langley Research Center Atmospheric Science Data Center, the NOAA ESRL Physical Sciences Division and the NASA MEaSUREs Program for providing data used in this analysis.

Author information




Y.C. and J.T.R. designed the study, Y.C. conducted the analysis, Y.C., D.C.M., N.A. and J.T.R. wrote the manuscript. G.v.d.W. and L.G. contributed to the interpretation of the fire-emissions and burned-area observations. All the authors contributed to the manuscript preparation and editing.

Corresponding author

Correspondence to Yang Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Tables 1–4, Supplementary Figures 1–7, Supplementary Section 1

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Morton, D.C., Andela, N. et al. A pan-tropical cascade of fire driven by El Niño/Southern Oscillation. Nature Clim Change 7, 906–911 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing