Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Increasing frequency of extremely severe cyclonic storms over the Arabian Sea

Abstract

In 2014 and 2015, post-monsoon extremely severe cyclonic storms (ESCS)—defined by the WMO as tropical storms with lifetime maximum winds greater than 46 m s1—were first observed over the Arabian Sea (ARB), causing widespread damage. However, it is unknown to what extent this abrupt increase in post-monsoon ESCSs can be linked to anthropogenic warming, natural variability, or stochastic behaviour. Here, using a suite of high-resolution global coupled model experiments that accurately simulate the climatological distribution of ESCSs, we show that anthropogenic forcing has likely increased the probability of late-season ECSCs occurring in the ARB since the preindustrial era. However, the specific timing of observed late-season ESCSs in 2014 and 2015 was likely due to stochastic processes. It is further shown that natural variability played a minimal role in the observed increase of ESCSs. Thus, continued anthropogenic forcing will further amplify the risk of cyclones in the ARB, with corresponding socio-economic implications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Observed ESCSs.
Fig. 2: Projected changes in the seasonal mean density of ESCSs.
Fig. 3: Projected probability of exceedance of ESCSs over the ARB during October–December for each experiment.
Fig. 4: Projected changes in seasonal mean SST and V s.

References

  1. 1.

    Tropical Cyclone Operational Plan for the Bay of Bengal and Arabian Sea WMO/TD-84 (WMO, 2015); www.wmo.int/pages/prog/www/tcp/documents/TCP-21Edition2015_final.pdf

  2. 2.

    Kruk, M. C. Tropical cyclones, North Indian Ocean. Bull. Amer. Meteorol. Soc. 97(8) (Suppl.), 114–115 (2016).

    Google Scholar 

  3. 3.

    Evan, A. T., Kossin, J. P., Chung, C. E. & Ramanathan, V. Arabian Sea tropical cyclones intensified by emissions of black carbon and other aerosols. Nature 479, 94–97 (2011).

    CAS  Article  Google Scholar 

  4. 4.

    Wang, B., Xu, S. & Wu, L. Intensified Arabian Sea tropical storms. Nature 489, E1–E2 (2012).

    CAS  Article  Google Scholar 

  5. 5.

    Evan, A. T. & Camargo, S. J. A climatology of Arabian Sea cyclonic storms. J. Clim. 24, 140–158 (2011).

    Article  Google Scholar 

  6. 6.

    Kossin, J. P., Olander, T. L. & Knapp, K. R. Trend analysis with a new global record of tropical cyclone intensity. J. Clim. 26, 9960–9976 (2013).

    Article  Google Scholar 

  7. 7.

    Knutson, T. et al. Tropical cyclones and climate change. Nat. Geosci. 3, 157–163 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    Murakami, H. et al. Simulation and prediction of Category 4 and 5 hurricanes in the high-resolution GFDL HiFLOR coupled climate model. J. Clim. 28, 9058–9079 (2015).

    Article  Google Scholar 

  9. 9.

    LaRow, T. E., Lim, Y.-K., Shin, D. W., Chassignet, E. P. & Cocke, S. Atlantic basin seasonal hurricane simulations. J. Clim. 21, 3191–3206 (2008).

    Article  Google Scholar 

  10. 10.

    Zhao, M., Held, I. M., Lin, S.-J. & Vecchi, G. A. Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50km resolution GCM. J. Clim. 22, 333–363 (2009).

    Google Scholar 

  11. 11.

    Manganello, J. V. et al. Tropical cyclone climatology in a 10-km global atmospheric GCM: toward weather-resolving climate modeling. J. Clim. 24, 3867–3893 (2012).

    Article  Google Scholar 

  12. 12.

    Murakami, H., Sugi, M. & Kitoh, A. Future changes in tropical cyclone activity in the North Indian Ocean projected by high-resolution MRI-AGCMs. Clim. Dyn. 40, 1949–1968 (2013).

    Article  Google Scholar 

  13. 13.

    Murakami, H. et al. Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J. Clim. 25, 3237–3260 (2012).

    Article  Google Scholar 

  14. 14.

    IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, Cambridge, 2007).

  15. 15.

    Murakami, H. et al. Seasonal forecasts of major hurricanes and landfalling tropical cyclones using a high-resolution GFDL coupled climate model. J. Clim. 29, 7977–7989 (2016).

    Article  Google Scholar 

  16. 16.

    Murakami, H. et al. Investigating the influence of anthropogenic forcing and natural variability on the 2014 Hawaiian hurricane season. Bull. Amer. Meteorol. Soc. 97(12) (Suppl.), 115–119 (2016).

    Google Scholar 

  17. 17.

    Murakami, H. et al. Dominant role of subtropical Pacific warming in extreme eastern Pacific hurricane seasons: 2015 and the future. J. Clim. 30, 243–264 (2017).

    Article  Google Scholar 

  18. 18.

    Vecchi, G. A. & Soden, B. J. Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature 450, 1066–1071 (2007).

    CAS  Article  Google Scholar 

  19. 19.

    Vecchi, G. A. & Soden, B. J. Increased tropical Atlantic wind shear in model projections of global warming. Geophys. Res. Lett. 34, L08702 (2007).

    Article  Google Scholar 

  20. 20.

    Sugi, M., Murakami, H. & Yoshimura, J. A reduction in global tropical cyclone frequency due to global warming. SOLA 5, 164–167 (2009).

    Article  Google Scholar 

  21. 21.

    Murakami, H., Mizuta, R. & Shindo, E. Future changes in tropical cyclone activity projected by multi-physics and multi-SST ensemble experiments using the 60-km-mesh MRI-AGCM. Clim. Dyn. 39, 2569–2584 (2012).

    Article  Google Scholar 

  22. 22.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Amer. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  23. 23.

    IPCC Climate Change 2013. The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, Cambridge, 2013).

  24. 24.

    Murakami, H., Wang, B., Li, T. & Kitoh, A. Projected increase in tropical cyclones near Hawaii. Nat. Clim. Change 3, 749–754 (2013).

    Article  Google Scholar 

  25. 25.

    Chu, J.-H., C. R. Sampson, Levin, A. S. & Fukada, E. The Joint Typhoon Warning Center Tropical Cyclone Best Tracks 1945–2000 NRL; https://www.gfdl.noaa.gov/cm2-5-and-flor/

  26. 26.

    Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J. & Neuman, C. J. The international best track archive for climate stewardship (IBTrACS): unifying tropical cyclone best track data. Bull. Amer. Meteorol. Soc. 91, 363–376 (2010).

    Article  Google Scholar 

  27. 27.

    Unisys Weather Hurricane/Tropical Data (UNISYS, 2017); http://weather.unisys.com/hurricane/

  28. 28.

    Rayner, N. A. et al. Global analysis of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003).

    Article  Google Scholar 

  29. 29.

    Kobayashi, S. et al. The JRA-55 reanalysis: general specifications and basic characteristics. J. Meteorol. Soc. Jpn 93, 5–48 (2015).

    Article  Google Scholar 

  30. 30.

    Jaeger, C. C., Krause, J., Haas, A., Klein, R. & Hasselmann, K. A method for computing the fraction of attributable risk related to climate damages. Risk Anal. 28, 815–823 (2008).

    Google Scholar 

  31. 31.

    Chiang, J. C. H. & Vimont, D. J. Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Clim. 17, 4143–4158 (2004).

    Article  Google Scholar 

  32. 32.

    Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteorol. Soc. 78, 1069–1079 (1997).

    Article  Google Scholar 

  33. 33.

    Saji, N. H., Goswami, B. N., Vinayachandran, P. N. & Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 401, 360–363 (1999).

    CAS  Google Scholar 

  34. 34.

    Wang, B. & Fan, Z. Choice of south Asian summer monsoon indices. Bull. Amer. Meteorol. Soc. 80, 629–638 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank T. L. Delworth and L. Krishnamurthy for their suggestions and comments. H.M. appreciates P.-C. Hsu for her editorial service support. This report was prepared by H.M. under award NA14OAR4830101 from the National Oceanic and Atmospheric Administration (NOAA), US Department of Commerce. The statements, findings, conclusions and recommendations are those of the authors and do not necessarily reflect the views of the NOAA or the US Department of Commerce.

Author information

Affiliations

Authors

Contributions

H.M. designed the study, carried out the experiments and analysed the results. G.A.V. and S.W. carried out the experiments and made comments on the manuscript.

Corresponding author

Correspondence to Hiroyuki Murakami.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Murakami, H., Vecchi, G.A. & Underwood, S. Increasing frequency of extremely severe cyclonic storms over the Arabian Sea. Nature Clim Change 7, 885–889 (2017). https://doi.org/10.1038/s41558-017-0008-6

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing