Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Warming alters energetic structure and function but not resilience of soil food webs

Abstract

Climate warming is predicted to alter the structure, stability, and functioning of food webs1,2,3,4,5. Yet, despite the importance of soil food webs for energy and nutrient turnover in terrestrial ecosystems, the effects of warming on these food webs—particularly in combination with other global change drivers—are largely unknown. Here, we present results from two complementary field experiments that test the interactive effects of warming with forest canopy disturbance and drought on energy flux in boreal–temperate ecotonal forest soil food webs. The first experiment applied a simultaneous above- and belowground warming treatment (ambient, +1.7 °C, +3.4 °C) to closed-canopy and recently clear-cut forest, simulating common forest disturbance6. The second experiment crossed warming with a summer drought treatment (−40% rainfall) in the clear-cut habitats. We show that warming reduces energy flux to microbes, while forest canopy disturbance and drought facilitates warming-induced increases in energy flux to higher trophic levels and exacerbates the reduction in energy flux to microbes, respectively. Contrary to expectations, we find no change in whole-network resilience to perturbations, but significant losses in ecosystem functioning. Warming thus interacts with forest disturbance and drought, shaping the energetic structure of soil food webs and threatening the provisioning of multiple ecosystem functions in boreal–temperate ecotonal forests.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of warming on soil food web structure.
Fig. 2: Effects of warming on energy fluxes in the soil food web.
Fig. 3: Effects of warming, canopy disturbance, and drought on whole network resilience.

Similar content being viewed by others

References

  1. Yvon-Durocher, G., Montoya, J. M., Trimmer, M. & Woodward, G. Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems. Glob. Change Biol. 17, 1681–1694 (2011).

    Article  Google Scholar 

  2. Petchey, O. L., McPhearson, P. T., Casey, T. M. & Morin, P. J. Environmental warming alters food-web structure and ecosystem function. Nature 402, 69–72 (1999).

    Article  CAS  Google Scholar 

  3. Binzer, A., Guill, C., Rall, B. C. & Brose, U. Interactive effects of warming, eutrophication and size structure: Impacts on biodiversity and food-web structure. Glob. Change Biol. 22, 220–227 (2016).

    Article  Google Scholar 

  4. O’Connor, M. I., Piehler, M. F., Leech, D. M., Anton, A. & Bruno, J. F. Warming and resource availability shift food web structure and metabolism. PLoS Biol. 7, 3–8 (2009).

    Google Scholar 

  5. Woodward, G. et al. Ecological networks in a changing climate. Adv. Ecol. Res. 42, 72–138 (2010).

    Google Scholar 

  6. Rich, R. L. et al. Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment. Glob. Change Biol. 21, 2105–2464 (2015).

    Article  Google Scholar 

  7. Fussmann, K. E., Schwarzmüller, F., Brose, U., Jousset, A. & Rall, B. C. Ecological stability in response to warming. Nat. Clim. Change 4, 206–210 (2014).

    Article  Google Scholar 

  8. Thakur, M. P., Künne, T., Griffin, J. N. & Eisenhauer, N. Warming magnifies predation and reduces prey coexistence in a model litter arthropod system. Proc. R. Soc. B 284, 20162570 (2017).

    Article  Google Scholar 

  9. Rip, J. M. K. & McCann, K. S. Cross-ecosystem differences in stability and the principle of energy flux. Ecol. Lett. 14, 733–740 (2011).

    Article  CAS  Google Scholar 

  10. de Ruiter, P. C., Neutel, A.-M. M. & Moore, J. C. Energetics, patterns of interaction strengths, and stability in real ecosystems. Science 269, 1257–1260 (1995).

    Article  Google Scholar 

  11. Gilbert, B. et al. A bioenergetic framework for the temperature dependence of trophic interactions. Ecol. Lett. 17, 902–914 (2014).

    Article  Google Scholar 

  12. Barnes, A. D. et al. Consequences of tropical land use for multitrophic biodiversity and ecosystem functioning. Nat. Commun. 5, 5351 (2014).

    Article  CAS  Google Scholar 

  13. Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. B. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).

    Article  CAS  Google Scholar 

  14. Ehnes, R. B., Rall, B. C. & Brose, U. Phylogenetic grouping, curvature and metabolic scaling in terrestrial invertebrates. Ecol. Lett. 14, 993–1000 (2011).

    Article  Google Scholar 

  15. Rall, B. C., Vucic-Pestic, O., Ehnes, R. B., Emmerson, M. & Brose, U. Temperature, predator-prey interaction strength and population stability. Glob. Change. Biol. 16, 2145–2157 (2010).

    Article  Google Scholar 

  16. De Vries, F. et al. Land use alters the resistance and resilience of soil food webs to drought. Nat. Clim. Change. 2, 276–280 (2012).

    Article  Google Scholar 

  17. Ledger, M. E., Brown, L. E., Edwards, F. K., Milner, A. M. & Woodward, G. Drought alters the structure and functioning of complex food webs. Nat. Clim. Change. 3, 223–227 (2012).

    Article  Google Scholar 

  18. Cebrian, J. Patterns in the fate of production in plant communities. Am. Nat. 154, 449–468 (1999).

    Article  CAS  Google Scholar 

  19. Wall, D. H., Nielsen, U. N. & Six, J. Soil biodiversity and human health. Nature 528, 69–76 (2015).

    CAS  Google Scholar 

  20. De Ruiter, P. C. De et al. Simulation of nitrogen mineralization in the below-ground food webs of two winter wheat fields. J. Appl. Ecol. 30, 95–106 (1993).

    Article  Google Scholar 

  21. Bradford, M. A. et al. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Change. 6, 751–758 (2016).

    Article  Google Scholar 

  22. Lang, B., Rall, B. C., Scheu, S. & Brose, U. Effects of environmental warming and drought on size-structured soil food webs. Oikos 123, 1224–1233 (2014).

    Article  Google Scholar 

  23. DeAngelis, K. M. et al. Long-term forest soil warming alters microbial communities in temperate forest soils. Front. Microbiol. 6, 1–13 (2015).

    Article  Google Scholar 

  24. Kardol, P., Reynolds, W. N., Norby, R. J. & Classen, A. T. A. T. Climate change effects on soil microarthropod abundance and community structure. Appl. Soil Ecol. 47, 37–44 (2011).

    Article  Google Scholar 

  25. Thakur, M. P. et al. Nematode community shifts in response to experimental warming and canopy conditions are associated with plant community changes in the temperate–boreal forest ecotone. Oecologia 175, 713–723 (2014).

    Article  Google Scholar 

  26. Bradford, M. A. et al. Thermal adaptation of soil microbial respiration to elevated temperature. Ecol. Lett. 11, 1316–1327 (2008).

    Article  Google Scholar 

  27. Hunt, H. W. et al. The detrital food web in a shortgrass prairie. Biol. Fertil. Soils 3, 57–68 (1987).

    Google Scholar 

  28. Adu, J. K. & Oades, J. M. Utilization of organic materials in soil aggregates by bacteria and fungi. Soil Biol. Biochem. 10, 117–122 (1978).

    Article  CAS  Google Scholar 

  29. Eisenhauer, N. et al. Organic textile dye improves the visual assessment of the bait-lamina test. Appl. Soil Ecol. 82, 78–81 (2014).

    Article  Google Scholar 

  30. Neutel, A. M. et al. Reconciling complexity with stability in naturally assembling food webs. Nature 449, 599–602 (2007).

    Article  CAS  Google Scholar 

  31. Thakur, M. P. et al. Effects of soil warming history on the performances of congeneric temperate and boreal herbaceous plant species and their associations with soil biota. J. Plant Ecol. 10, 670–680 (2017).

    Google Scholar 

  32. Scheu, S. Automated measurement of the respiratory response of soil microcompartments: active microbial biomass in earthworm faeces. Soil Biol. Biochem. 24, 1–6 (1992).

    Article  Google Scholar 

  33. Anderson, J. & Domsch, K. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol. Biochem. 10, 215–221 (1978).

    Article  CAS  Google Scholar 

  34. Beck, T. et al. An inter-laboratory comparison of ten different ways of measuring soil microbial biomass C. Soil Biol. Biochem. 29, 1023–1032 (1997).

    Article  CAS  Google Scholar 

  35. Ruess, L. Studies on the nematode fauna of an acid forest soil: spatial distribution and extraction. Nematologica 41, 229–239 (1995).

    Article  Google Scholar 

  36. Bongers, T. De nematoden van Nederland; een Identificatietabel voor de in Nederland Aangetroffen Zoetwater-en Bodembewonende Nematoden (KNNV Uitgeverij, Utrecht, 1988).

  37. Yeates, G. W., Bongers, T., De Goede, R. G., Freckman, D. W. & Georgieva, S. S. Feeding habits in soil nematode families and genera-an outline for soil ecologists. J. Nematol. 25, 315–331 (1993).

    CAS  Google Scholar 

  38. Okada, H., Harada, H. & Kadota, I. Fungal-feeding habits of six nematode isolates in the genus Filenchus. Soil Biol. Biochem. 37, 1113–1120 (2005).

    Article  CAS  Google Scholar 

  39. Yeates, G. W. Soil nematodes in terrestrial ecosystems. J. Nematol. 11, 213–229 (1979).

    CAS  Google Scholar 

  40. Holtkamp, R. et al. Soil food web structure during ecosystem development after land abandonment. Appl. Soil Ecol. 39, 23–34 (2008).

    Article  Google Scholar 

  41. Kempson, D., Lloyd, M. & Ghelardi, R. A new extractor for woodland litter. Pedobiologia 3, 1–21 (1963).

    Google Scholar 

  42. Schäfer, M. & Brohmer, P. Fauna von Deutschland: ein Bestimmungsbuch unserer heimischen Tierwelt (Quelle & Meyer, Wiebelsheim, 2006).

  43. Crotty, F. & Shepherd, M. A Key to Soil Mites in the UK (Field Studies Council, 2014); http://tombio.myspecies.info/files/MitesKeyTest-2014-03-07.pdf

  44. Swift, M. J., Heal, O. W. & Anderson, J. M. Decomposition in Terrestrial Ecosystems 5 (Univ. California Press, Berkeley and Los Angeles, 1979).

  45. Edwards, C. A. in Progress in Soil Biology (eds Graff, O. & Satchell, J.) 585–591 (North-Holland Publishing Company, New York, 1967).

  46. Mercer, R. D., Gabriel, A. G. A., Barendse, J., Marshall, D. J. & Chown, S. L. Invertebrate body sizes from Marion Island. Antarct. Sci. 13, 135–143 (2001).

    Article  Google Scholar 

  47. Teuben, A. & Verhoef, H. A. Direct contribution by soil arthropods to nutrient availability through body and faecal nutrient content. Biol. Fertil. Soils 14, 71–75 (1992).

    Article  CAS  Google Scholar 

  48. Berg, M. et al. Community food web, decomposition and nitrogen mineralisation in a stratified Scots pine forest soil. Oikos 94, 130–142 (2001).

    Article  CAS  Google Scholar 

  49. Didden, W. A. M. et al. Soil meso- and macrofauna in two agricultural systems: factors affecting population dynamics and evaluation of their role in carbon and nitrogen dynamics. Agric. Ecosyst. Environ. 51, 171–186 (1994).

    Article  Google Scholar 

  50. Freckman, D. W. & Caswell, E. P. The ecology of nematodes in agroecosystems. Annu. Rev. Phytopathol. 23, 275–296 (1985).

    Article  Google Scholar 

  51. Petersen, H. & Luxton, M. A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 39, 288 (1982).

    Article  Google Scholar 

  52. Pollierer, M. M., Langel, R., Scheu, S. & Maraun, M. Compartmentalization of the soil animal food web as indicated by dual analysis of stable isotope ratios (15N/14N and 13C/12C). Soil Biol. Biochem. 41, 1221–1226 (2009).

    Article  CAS  Google Scholar 

  53. Walter, D. E. & Proctor, H. C. Mites: Ecology, Evolution and Behaviour (Springer, Dordrecht Heidelberg, New York, London, 1999).

  54. Andrén, O. et al. Organic carbon and nitrogen flows. Ecol. Bull. 40, 85–126 (1990).

    Google Scholar 

  55. Walter, D. E. & Ikonen, E. K. Species, guilds, and functional groups: taxonomy and behavior in nematophagous arthropods. J. Nematol. 21, 315–327 (1989).

    CAS  Google Scholar 

  56. Scheu, S. & Falca, M. The soil food web of two beech forests (Fagus sylvatica) of contrasting humus type: stable isotope analysis of a macro- and a mesofauna-dominated community. Oecologia 123, 285–296 (2000).

    Article  CAS  Google Scholar 

  57. Peters, R. H. The Ecological Implications of Body Size (Cambridge University Press, Cambridge, 1983).

  58. Wardle, D. A. & Ghani, A. A critique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance and ecosystem development. Soil Biol. Biochem. 27, 1601–1610 (1995).

    Article  CAS  Google Scholar 

  59. Salonen, K., Sarvala, J., Hakala, I. & Viljanen, M. L. Relation of energy and organic-carbon in aquatic invertebrates. Limnol. Oceanogr. 21, 724–730 (1976).

    Article  CAS  Google Scholar 

  60. Gongalsky, K. B., Persson, T. & Pokarzhevskii, A. D. Effects of soil temperature and moisture on the feeding activity of soil animals as determined by the bait-lamina test. Appl. Soil Ecol. 39, 84–90 (2008).

    Article  Google Scholar 

  61. von Törne, E. Assessing feeding activities of soil-living animals. I. Bait-lamina-tests. Pedobiologia 34, 89–101 (1990).

    Google Scholar 

  62. Neutel, A.-M., Heesterbeek, J. A. P. & de Ruiter, P. C. Stability in real food webs: weak links in long loops. Science 296, 1120–1123 (2002).

    Article  CAS  Google Scholar 

  63. Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, Thousand Oaks, 2010).

  64. Gelman, A. Scaling regression inputs by dividing by two standard deviations. Stat. Med. 27, 2865–2873 (2008).

    Article  Google Scholar 

  65. Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometric. J. 50, 346–363 (2008).

    Article  Google Scholar 

  66. Zuur, A. F., Ieni, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, New York, 2009).

Download references

Acknowledgements

B.S. acknowledges the support of the German Academic Exchange Service (DAAD). A.D.B., M.P.T., U.B., B.R. and N.E. acknowledge the support of the German Centre for integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig funded by the German Research Foundation (FZT 118). A.D.B. was funded by the German Research Foundation within the framework of the Jena Experiment (FOR 1451). N.E. acknowledges funding by the German Research Foundation (DFG; Ei 862/1, Ei 862/2). This project also received support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no 677232 to N.E.). The B4WarmED project has been funded by the US Department of Energy (Grant No. DE-FG02-07ER64456), College of Food, Agricultural and Natural Resource Sciences (CFANS), and Wilderness Research Foundation at the University of Minnesota, and the Minnesota Environment and Natural Resources Trust Fund.

Author information

Authors and Affiliations

Authors

Contributions

B.S., A.D.B., M.P.T and N.E. designed the study. P.B.R. designed and co-ordinated the B4WarmED experiment. R.L.R. and A.S. designed and implemented the warming and rainfall manipulation system. B.S., M.C., A.S. and N.E. carried out the field and laboratory work. B.S. analysed the data with inputs from A.D.B, M.P.T. and N.E. B.S., A.D.B., M.P.T. and N.E. jointly wrote the first draft, and all other authors contributed substantially to the manuscript.

Corresponding author

Correspondence to Andrew D. Barnes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Electronic supplementary material

Supplementary Information

Supplementary Figures 1–8, Supplementary Tables 1–11, Supplementary References

Supplementary Data 1

This table contains plot-level biomass data of the first experiment. Biomasses (mg C m–2) are given for each feeding guild as well as for trophic groups (microbes, herbivores, detritivores and predators), total fauna, and the whole network

Supplementary Data 2

This table contains plot-level energy flux data of the first experiment. Energy fluxes (g C m–2 d–1) are given for each feeding guild as well as for trophic groups (microbes, herbivores, detritivores and predators), total fauna, and the whole network

Supplementary Data 3

This table contains plot-level biomass data of the second experiment. Biomasses (mg C m–2) are given for each feeding guild as well as for trophic groups (microbes, herbivores, detritivores and predators), total fauna, and the whole network

Supplementary Data 4

This table contains plot-level energy flux data of the second experiment. Energy fluxes (g C m–2 d–1) are given for each feeding guild as well as for trophic groups (microbes, herbivores, detritivores and predators), total fauna, and the whole network

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwarz, B., Barnes, A.D., Thakur, M.P. et al. Warming alters energetic structure and function but not resilience of soil food webs. Nature Clim Change 7, 895–900 (2017). https://doi.org/10.1038/s41558-017-0002-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-017-0002-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing