Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Matters Arising
  • Published:

Questioning claims of monitoring the Michael addition reaction at the single-molecule level

Matters Arising to this article was published on 23 September 2024

The Original Article was published on 15 May 2023

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Six different possible products that can be formed from a Michael addition reaction of 1,3-dicarbonyl compound to maleimide.

Data availability

Data sharing is not applicable as this Article is a comment on a published work.

References

  1. Yang, C. et al. Real-time monitoring of reaction stereochemistry through single-molecule observations of chirality-induced spin selectivity. Nat. Chem. 15, 972–979 (2023).

    Article  PubMed  CAS  Google Scholar 

  2. Huang, X. et al. Electric field-induced selective catalysis of single-molecule reaction. Sci. Adv. 5, eaaw3072 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Zang, Y. et al. In situ coupling of single molecules driven by Au-catalyzed electrooxidation. Angew. Chem. Int. Ed. 58, 16008–16012 (2019).

    Article  CAS  Google Scholar 

  4. Lin, J. et al. Cleavage of non-polar C(sp2)-C(sp2) bonds in cycloparaphenylenes via electric field-catalyzed electrophilic aromatic substitution. Nat. Commun. 14, 293 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Neaton, J. B., Hybertsen, M. S. & Louie, S. G. Renormalization of molecular electronic levels at metal-molecule interfaces. Phys. Rev. Lett. 97, 216405 (2006).

    Article  PubMed  CAS  Google Scholar 

  6. Evers, F., Weigend, F. & Koentopp, M. Conductance of molecular wires and transport calculations based on density-functional theory. Phys. Rev. B 69, 235411 (2004).

    Article  Google Scholar 

  7. Kristensen, I. S., Mowbray, D. J., Thygesen, K. S. & Jacobsen, K. W. Comparative study of anchoring groups for molecular electronics: structure and conductance of Au-S-Au and Au-NH2-Au junctions. J. Phys. Cond. Matter 20, 374101 (2008).

    Article  CAS  Google Scholar 

  8. Evers, F., Korytár, R., Tewari, S. & van Ruitenbeek, J. M. Advances and challenges in single-molecule electron transport. Rev. Mod. Phys. 92, 035001 (2020).

    Article  CAS  Google Scholar 

  9. Klein, J. et al. Inelastic-electron-tunneling spectroscopy of metal-insulator-metal junctions. Phys. Rev. B 7, 2336–2348 (1973).

    Article  CAS  Google Scholar 

  10. An, L.-Y., Dai, Z., Di, B. & Xu, L.-L. Advances in cryochemistry: mechanisms, reactions and applications. Molecules 26, 750 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Gómez-Torres, E., Alonso, D. A., Gómez-Bengoa, E. & Nájera, C. Conjugate, addition of 1,3-dicarbonyl compounds to maleimides using a chiral C2-symmetric bis(2-aminobenzimidazole) as recyclable organocatalyst. Org. Lett. 13, 6106–6109 (2011).

    Article  PubMed  Google Scholar 

  12. Gómez-Torres, E., Alonso, D. A., Gómez-Bengoa, E. & Nájera, C. Enantioselective synthesis of succinimides by Michael addition of 1,3-dicarbonyl compounds to maleimides catalyzed by a chiral bis(2-aminobenzimidazole) organocatalyst. Eur. J. Org. Chem. 2013, 1434–1440 (2013).

    Article  Google Scholar 

  13. Darancet, P. et al. Quantitative current-voltage characteristics in molecular junctions from first principles. Nano Lett. 12, 6250–6254 (2012).

    Article  PubMed  CAS  Google Scholar 

  14. Kim, Y. & Song, H. Noise spectroscopy of molecular electronic junctions. Appl. Phys. Rev. 8, 011303 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Tekle-Smith for discussions. This work is supported in part by the National Science Foundation under grant no. CHE-2023568 and by the Netherlands Organisation for Scientific Research (NWO), grant no. 680.92.18.01.

Author information

Authors and Affiliations

Authors

Contributions

L.V. and J.v.R. contributed equally to analysing the data in Yang et al.1 and writing this Matters Arising.

Corresponding authors

Correspondence to Latha Venkataraman or Jan van Ruitenbeek.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkataraman, L., van Ruitenbeek, J. Questioning claims of monitoring the Michael addition reaction at the single-molecule level. Nat. Chem. (2024). https://doi.org/10.1038/s41557-024-01631-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-024-01631-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing