Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Discovery of the selenium-containing antioxidant ovoselenol derived from convergent evolution

Abstract

Selenium is an essential micronutrient, but its presence in biology has been limited to protein and nucleic acid biopolymers. The recent identification of a biosynthetic pathway for selenium-containing small molecules suggests that there is a larger family of selenometabolites that remains to be discovered. Here we identify a recently evolved branch of abundant and uncharacterized metalloenzymes that we predict are involved in selenometabolite biosynthesis using a bioinformatic search strategy that relies on the mapping of composite active site motifs. Biochemical studies confirm this prediction and show that these enzymes form an unusual C–Se bond onto histidine, thus giving rise to a distinct selenometabolite and potent antioxidant that we have termed ovoselenol. Aside from providing insights into the evolution of this enzyme class and the structural basis of C–Se bond formation, our work offers a blueprint for charting the microbial selenometabolome in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LMW thiols and selenols in biology.
Fig. 2: Identification of divergent NHISS clades with potentially distinct functions.
Fig. 3: Discovery of OVS and its biosynthetic pathway.
Fig. 4: Mutagenesis and X-ray crystal structure analysis of OvsA reveal the basis for C–Se bond regioselectivity.

Similar content being viewed by others

Data availability

Protein crystal structure coordinates have been deposited with the PDB (https://www.rcsb.org/) under accession numbers 8U42 (OvsA), 8U41 (Ovs+His) and 8UX5 (OvsA-YNF). Other referenced crystal structures are available in the PDB under accession numbers 8KHQ, 4X8D, 6O6L, 8K5I and 8K5J. Experimental data supporting the conclusions of this study are available within the Article and its Supplementary Information. Source data are provided with this paper and include sequences retrieved from the NCBI Non-redundant Protein Database (https://www.ncbi.nlm.nih.gov/protein/), bioinformatic analyses and raw experimental data from main text figures. Due to large file sizes, additional raw data from Supplementary Information will be made available upon request from the corresponding author.

References

  1. Walsh, C. T. The Chemical Biology of Sulfur (The Royal Society of Chemistry, 2020).

  2. Reich, H. J. & Hondal, R. J. Why nature chose selenium. ACS Chem. Biol. 11, 821–841 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Dunbar, K. L., Scharf, D. H., Litomska, A. & Hertweck, C. Enzymatic carbon–sulfur bond formation in natural product biosynthesis. Chem. Rev. 117, 5521–5577 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Kayrouz, C. M., Huang, J., Hauser, N. & Seyedsayamdost, M. R. Biosynthesis of selenium-containing small molecules in diverse microorganisms. Nature 610, 199–204 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Cordell, G. A. & Lamahewage, S. N. S. Ergothioneine, ovothiol A, and selenoneine-histidine-derived, biologically significant, trace global alkaloids. Molecules 27, 2673 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gründemann, D. et al. Discovery of the ergothioneine transporter. Proc. Natl Acad. Sci. USA 102, 5256–5261 (2022).

    Article  Google Scholar 

  7. Cheah, I. K. & Halliwell, B. Ergothioneine; antioxidant potential, physiological function and role in disease. Biochim. Biophys. Acta 1822, 784–793 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Braunshausen, A. & Seebeck, F. P. Identification and characterization of the first ovothiol biosynthetic enzyme. J. Am. Chem. Soc. 133, 1757–1759 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Seebeck, F. P. In vitro reconstitution of mycobacterial ergothioneine biosynthesis. J. Am. Chem. Soc. 132, 6632–6633 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Stampfli, A. R. et al. An alternative active site architecture for O2 activation in the ergothioneine biosynthetic EgtB from Chloracidobacterium thermophilum. J. Am. Chem. Soc. 141, 5275–5285 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Liao, C. & Seebeck, F. P. Convergent evolution of ergothioneine biosynthesis in cyanobacteria. ChemBioChem 18, 2115–2118 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Hu, W. et al. Bioinformatic and biochemical characterizations of C–S bond formation and cleavage enzymes in the fungus Neurospora crassa ergothioneine biosynthetic pathway. Org. Lett. 16, 5382–5385 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Goncharenko, K. V., Vit, A., Blankenfeldt, W. & Seebeck, F. P. Structure of the sulfoxide synthase EgtB from the ergothioneine biosynthetic pathway. Angew. Chem. Int. Ed. 54, 2821–2824 (2015).

    Article  CAS  Google Scholar 

  14. Wang, X. et al. Biochemical and structural characterization of OvoATh2: a mononuclear nonheme iron enzyme from Hydrogenimonas thermophila for ovothiol biosynthesis. ACS Catal. 13, 15417–15426 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu, M. et al. Structural insights into a novel nonheme iron-dependent oxygenase in selenoneine biosynthesis. Int. J. Biol. Macromol. 256, 128428 (2024).

    Article  CAS  PubMed  Google Scholar 

  16. Elder, J. B., Broome, J. A. & Bushnell, E. A. C. Computational insights into the regeneration of ovothiol and ergothioneine and their selenium analogues by glutathione. ACS Omega 7, 31813–31821 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wiebe, J., Zaliskyy, V., & Bushnell, E. A. C. A Computational investigation of the binding of the selenium analogues of ergothioneine and ovothiol to Cu(I) and Cu(II) and the effect of binding on the redox potential of the Cu(II)/Cu(I) redox couple. J. Chem. https://doi.org/10.1155/2019/9593467 (2019).

  18. Marjanovic, B., Simic, M. G. & Jovanovic, S. V. Heterocyclic thiols as antioxidants: why ovothiol C is a better antioxidant than ergothioneine. Free Radic. Biol. Med. 18, 679–685 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Kirchnerova, J. & Purdy, W. C. The mechanism of the electrochemical oxidation of thiourea. Anal. Chim. Acta 123, 83–95 (1981).

    Article  CAS  Google Scholar 

  20. Yamashita, M. & Yamashita, Y. in Selenoneine in Marine Organisms (ed. Kim, S.-K.) 1059–1069 (Springer, 2015).

  21. Zhu, Q., Costentin, C., Stubbe, J. & Nocera, D. G. Disulfide radical anion as a super-reductant in biology and photoredox chemistry. Chem. Sci. 14, 6876–6881 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cooper, D. R., Grelewska, K., Kim, C.-Y., Joachimiak, A. & Derewenda, Z. S. The structure of DinB from Geobacillus stearothermophilus: a representative of a unique four-helix-bundle superfamily. Acta Crystallogr. Sect. F 66, 219–224 (2010).

    Article  CAS  Google Scholar 

  23. McMahon, S. A. et al. The C-type lectin fold as an evolutionary solution for massive sequence variation. Nat. Struct. Mol. Biol. 12, 886–892 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Le Coq, J. & Ghosh, P. Conservation of the C-type lectin fold for massive sequence variation in a Treponema diversity-generating retroelement. Proc. Natl Acad. Sci. USA 108, 14649–14653 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chen, L. et al. Use of a tyrosine analogue to modulate the two activities of a nonheme iron enzyme OvoA in ovothiol biosynthesis, cysteine oxidation versus oxidative C–S bond formation. J. Am. Chem. Soc. 140, 4604–4612 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Goncharenko, K. V. & Seebeck, F. P. Conversion of a non-heme iron-dependent sulfoxide synthase into a thiol dioxygenase by a single point mutation. Chem. Commun. 52, 1945–1948 (2016).

    Article  CAS  Google Scholar 

  27. Cheng, R. et al. OvoAMtht from Methyloversatilis thermotolerans ovothiol biosynthesis is a bifunction enzyme: thiol oxygenase and sulfoxide synthase activities. Chem. Sci. 13, 3589–3598 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen, L. et al. Mechanistic studies of a nonheme iron enzyme OvoA in ovothiol biosynthesis using a tyrosine analogue, 2-amino-3-(4-hydroxy-3-(methoxyl) phenyl) propanoic acid (MeOTyr). ACS Catal. 9, 253–258 (2019).

    Article  Google Scholar 

  29. Naowarojna, N. et al. In vitro reconstitution of the remaining steps in ovothiol A biosynthesis: C–S lyase and methyltransferase reactions. Org. Lett. 20, 5427–5430 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Burn, R., Misson, L., Meury, M. & Seebeck, F. P. Anaerobic origin of ergothioneine. Angew. Chem. 129, 12682–12685 (2017).

    Article  Google Scholar 

  31. Beliaeva, M. A. & Seebeck, F. P. Discovery and characterization of the metallopterin-dependent ergothioneine synthase from Caldithrix abyssi. JACS Au 2, 2098–2107 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kumar, A. A., Illyes, T. Z., Kover, K. E. & Szilagyi, L. Convenient syntheses of 1,2-trans selenoglycosides using isoselenuronium salts as glycosylselenenyl transfer reagents. Carbohydrate Res. 360, 8–18 (2012).

    Article  CAS  Google Scholar 

  33. Katoh, K. Mafft: a novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tareen, A. & Kinney, J. B. Logomaker: beautiful sequence logos in Python. Bioinformatics 36, 2272–2274 (2019).

    Article  PubMed Central  Google Scholar 

  35. Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-hit: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hoang, T. T., Karkhoff-Schweizer, R. R., Kutchma, A. J. & Schweizer, H. P. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212, 77–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Blodgett, J. A. V. et al. Common biosynthetic origins for polycyclic tetramate macrolactams from phylogenetically diverse bacteria. Proc. Natl Acad. Sci. USA 107, 11692–11697 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. Sect. D 67, 271–281 (2011).

    Article  CAS  Google Scholar 

  40. Kabsch, W. XDS. Acta Crystallogr. Sect. D 66, 125–132 (2010).

  41. Evans, P. R. An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Crystallogr. Sect. D 67, 282–292 (2011).

    Article  CAS  Google Scholar 

  42. Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution. Acta Crystallogr. Sect. D 69, 1204–1214 (2013).

    Article  CAS  Google Scholar 

  43. Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. Sect. D 67, 235–242 (2012).

    Article  Google Scholar 

  44. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. Sect. D 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  45. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  46. Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. The PyMOL molecular graphics system, version 2.5.5. Schrödinger https://www.pymol.org/ (2023).

  48. Laskowski, R. A. & Swindells, M. B. LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 51, 2778–2786 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Eli Lilly-Edward C. Taylor Fellowship in Chemistry (to C.M.K.), the National Science Foundation (Graduate Research Fellowship Program no. 1937971 to K.A.I. and NSF CAREER award no. 184786 to M.R.S.) and the National Institutes of Health (grant R35 GM147557 to K.M.D. and grant R01 GM140034 to M.R.S.) for financial support. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. This research used resources of the APS and the Center for High-Energy X-ray Sciences (CHEXS). APS is a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357. Use of the LS-CAT Sector 21 was supported by the Michigan Economic Development Corporation and the Michigan Technology Tri-Corridor (grant 085P1000817). GM/CA@APS has been funded by the National Cancer Institute (ACB-12002) and the National Institute of General Medical Sciences (AGM-12006, P30GM138396). The Eiger 16M detector at GM/CA-XSD was funded by NIH grant S10 OD012289. CHEXS is supported by the NSF award DMR-1829070, and the MacCHESS resource is supported by NIGMS award 1-P30-GM124166-01A1 and NYSTAR.

Author information

Authors and Affiliations

Authors

Contributions

C.M.K. and M.R.S. conceived of the idea for the study. C.M.K. performed all bioinformatic and biochemistry experiments. K.A.I. performed all structural biology experiments. V.Y.Y. synthesized SeGlcNAc and performed electrochemical measurements. C.M.K., K.A.I., V.Y.Y., K.M.D. and M.R.S. analysed data and prepared the manuscript.

Corresponding author

Correspondence to Mohammad R. Seyedsayamdost.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–8, Figs. 1–17, additional discussion of OvsA structure, source data of uncropped DNA gel scans, and references.

Reporting Summary

Source data

Source Data Fig. 2

Sequences retrieved from NCBI database (accession numbers, composite motifs and classifications).

Source Data Fig. 3

Phylogenetic distribution of ovsA genes, BGC co-occurrence data, extracted ion chromatograms, mass spectra and CV traces.

Source Data Fig. 4

Extracted ion chromatograms and NMR spectra.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayrouz, C.M., Ireland, K.A., Ying, V.Y. et al. Discovery of the selenium-containing antioxidant ovoselenol derived from convergent evolution. Nat. Chem. (2024). https://doi.org/10.1038/s41557-024-01600-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-024-01600-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing