Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic structural twist in metal–organic frameworks enhances solar overall water splitting

Abstract

Photocatalytic overall water splitting holds great promise for solar-to-hydrogen conversion. Maintaining charge separation is a major challenge but is key to unlocking this potential. Here we discovered a metal–organic framework (MOF) that shows suppressed charge recombination. This MOF features electronically insulated Zn2+ nodes and two chemically equivalent, yet crystallographically independent, linkers. These linkers behave as an electron donor–acceptor pair with non-overlapping band edges. Upon photoexcitation, the MOF undergoes a dynamic excited-state structural twist, inducing orbital rearrangements that forbid radiative relaxation and thereby promote a long-lived charge-separated state. As a result, the MOF achieves visible-light photocatalytic overall water splitting, in the presence of co-catalysts, with an apparent quantum efficiency of 3.09 ± 0.32% at 365 nm and shows little activity loss in 100 h of consecutive runs. Furthermore, the dynamic excited-state structural twist is also successfully extended to other photocatalysts. This strategy for suppressing charge recombination will be applicable to diverse photochemical processes beyond overall water splitting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemically segregated system construction and structural characterization.
Fig. 2: Analysis of orbitals and structures.
Fig. 3: Photocatalytic performance.
Fig. 4: Charge separation and proton migration performance.
Fig. 5: Performance comparison of CFA-Zn and CFA-Zn/Con.

Similar content being viewed by others

Data availability

Additional discussions and data supporting this article are available in the Supplementary Information. Source data are provided with this paper.

References

  1. Hisatomi, T. & Domen, K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat. Catal. 2, 387–399 (2019).

    CAS  Google Scholar 

  2. Liu, M. et al. Photocatalytic hydrogen production using twinned nanocrystals and an unanchored NiSx co-catalyst. Nat. Energy 1, 16151 (2016).

    CAS  Google Scholar 

  3. Ran, J. et al. NiPS3 ultrathin nanosheets as versatile platform advancing highly active photocatalytic H2 production. Nat. Commun. 13, 4600 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Wang, X. et al. Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nat. Chem. 10, 1180–1189 (2018).

    PubMed  CAS  Google Scholar 

  5. Kosco, J. et al. Generation of long-lived charges in organic semiconductor heterojunction nanoparticles for efficient photocatalytic hydrogen evolution. Nat. Energy 7, 340–351 (2022).

    CAS  Google Scholar 

  6. Wang, Z., Li, C. & Domen, K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem. Soc. Rev. 48, 2109–2125 (2019).

    PubMed  CAS  Google Scholar 

  7. Wang, Q., Pornrungroj, C., Linley, S. & Reisner, E. Strategies to improve light utilization in solar fuel synthesis. Nat. Energy 7, 13–24 (2022).

    Google Scholar 

  8. Zou, Z., Ye, J., Sayama, K. & Arakawa, H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414, 625–627 (2001).

    PubMed  CAS  Google Scholar 

  9. Liu, J. et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347, 970–974 (2015).

    PubMed  CAS  Google Scholar 

  10. Takata, T. et al. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 581, 411–414 (2020).

    PubMed  CAS  Google Scholar 

  11. Nishiyama, H. et al. Photocatalytic solar hydrogen production from water on a 100-m2 scale. Nature 598, 304–307 (2021).

    PubMed  CAS  Google Scholar 

  12. Zhou, P. et al. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature 613, 66–70 (2023).

    PubMed  CAS  Google Scholar 

  13. Zhang, G., Lan, Z.-A., Lin, L., Lin, S. & Wang, X. Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents. Chem. Sci. 7, 3062–3066 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Song, X. et al. Overall photocatalytic water splitting by an organolead iodide crystalline material. Nat. Catal. 3, 1027–1033 (2020).

    CAS  Google Scholar 

  15. Larom, S., Salama, F., Schuster, G. & Adir, N. Engineering of an alternative electron transfer path in photosystem II. Proc. Natl Acad. Sci. USA 107, 9650–9655 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Dods, R. et al. Ultrafast structural changes within a photosynthetic reaction centre. Nature 589, 310–314 (2021).

    PubMed  CAS  Google Scholar 

  17. Grabowski, Z. R., Rotkiewicz, K. & Rettig, W. Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem. Rev. 103, 3899–4032 (2003).

    PubMed  Google Scholar 

  18. Wang, Y. et al. Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts. Nat. Energy 4, 746–760 (2019).

    CAS  Google Scholar 

  19. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

    PubMed  Google Scholar 

  20. Li, G., Zhao, S., Zhang, Y. & Tang, Z. Metal–organic frameworks encapsulating active nanoparticles as emerging composites for catalysis: recent progress and perspectives. Adv. Mater. 30, 1800702 (2018).

    Google Scholar 

  21. Hu, H. et al. Metal–organic frameworks embedded in a liposome facilitate overall photocatalytic water splitting. Nat. Chem. 13, 358–366 (2021).

    PubMed  CAS  Google Scholar 

  22. Stanley, P. M., Haimerl, J., Shustova, N. B., Fischer, R. A. & Warnan, J. Merging molecular catalysts and metal–organic frameworks for photocatalytic fuel production. Nat. Chem. 14, 1342–1356 (2022).

    PubMed  CAS  Google Scholar 

  23. Navalón, S., Dhakshinamoorthy, A., Álvaro, M., Ferrer, B. & García, H. Metal–organic frameworks as photocatalysts for solar-driven overall water splitting. Chem. Rev. 123, 445–490 (2023).

    PubMed  Google Scholar 

  24. Nguyen, H. L. Metal–organic frameworks for photocatalytic water splitting. Sol. RRL 5, 2100198 (2021).

    CAS  Google Scholar 

  25. Nguyen, H. L. Metal–organic frameworks can photocatalytically split water—why not? Adv. Mater. 34, 2200465 (2022).

    CAS  Google Scholar 

  26. Jiao, L., Wang, J. & Jiang, H.-L. Microenvironment modulation in metal–organic framework-based catalysis. Acc. Mater. Res. 2, 327–339 (2021).

    CAS  Google Scholar 

  27. Schmieder, P. et al. CFA-1: the first chiral metal–organic framework containing Kuratowski-type secondary building units. Dalton Trans. 42, 10786–10797 (2013).

    PubMed  CAS  Google Scholar 

  28. Braslavsky, S. E. et al. Glossary of terms used in photocatalysis and radiation catalysis (IUPAC Recommendations 2011). Pure Appl. Chem. 83, 931–1014 (2011).

    CAS  Google Scholar 

  29. Lachmanová, Š. et al. Kinetics of multielectron transfers and redox-induced structural changes in N-aryl-expanded pyridiniums: establishing their unusual, versatile electrophoric activity. J. Am. Chem. Soc. 137, 11349–11364 (2015).

    PubMed  Google Scholar 

  30. Damrauer, N. H. et al. Effects of intraligand electron delocalization, steric tuning, and excited-state vibronic coupling on the photophysics of aryl-substituted bipyridyl complexes of Ru(II). J. Am. Chem. Soc. 119, 8253–8268 (1997).

    CAS  Google Scholar 

  31. Wang, H. et al. High quantum efficiency of hydrogen production from methanol aqueous solution with PtCu–TiO2 photocatalysts. Nat. Mater. 22, 619–626 (2023).

    PubMed  CAS  Google Scholar 

  32. Fu, C. et al. Spontaneous bulk-surface charge separation of TiO2-{001} nanocrystals leads to high activity in photocatalytic methane combustion. ACS Catal. 12, 6457–6463 (2022).

    CAS  Google Scholar 

  33. An, Y. et al. NiII coordination to an Al-based metal-organic framework made from 2-aminoterephthalate for photocatalytic overall water splitting. Angew. Chem. Int. Ed. 56, 3036–3040 (2017).

    CAS  Google Scholar 

  34. Zhang, J. et al. Metal–organic-framework-based photocatalysts optimized by spatially separated cocatalysts for overall water splitting. Adv. Mater. 32, 2004747 (2020).

    CAS  Google Scholar 

  35. Salcedo-Abraira, P. et al. A novel porous Ti-squarate as efficient photocatalyst in the overall water splitting reaction under simulated sunlight irradiation. Adv. Mater. 33, 2106627 (2021).

    CAS  Google Scholar 

  36. Nyakuchena, J. et al. Direct evidence of photoinduced charge transport mechanism in 2D conductive metal organic frameworks. J. Am. Chem. Soc. 142, 21050–21058 (2020).

    PubMed  CAS  Google Scholar 

  37. Shi, M. et al. Intrinsic facet-dependent reactivity of well-defined BiOBr nanosheets on photocatalytic water splitting. Angew. Chem. Int. Ed. 59, 6590–6595 (2020).

    CAS  Google Scholar 

  38. Liu, Y. et al. Phase-enabled metal–organic framework homojunction for highly selective CO2 photoreduction. Nat. Commun. 12, 1231 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Bottaro, S. & Lindorff-Larsen, K. Biophysical experiments and biomolecular simulations: a perfect match? Science 361, 355–360 (2018).

    PubMed  CAS  Google Scholar 

  40. Hu, S. et al. Proton transport through one-atom-thick crystals. Nature 516, 227–230 (2014).

    PubMed  CAS  Google Scholar 

  41. Santaclara, J. G. et al. Organic linker defines the excited-state decay of photocatalytic MIL-125(Ti)-type materials. ChemSusChem 9, 388–395 (2016).

    PubMed  CAS  Google Scholar 

  42. Rachuri, Y., Parmar, B., Bisht, K. K. & Suresh, E. Mixed ligand two dimensional Cd(II)/Ni(II) metal organic frameworks containing dicarboxylate and tripodal N-donor ligands: Cd(II) MOF is an efficient luminescent sensor for detection of picric acid in aqueous media. Dalton Trans. 45, 7881–7892 (2016).

    PubMed  CAS  Google Scholar 

  43. Huang, G.-Q. et al. Mixed-linker isoreticular Zn(II) metal–organic frameworks as Brønsted acid–base bifunctional catalysts for Knoevenagel condensation reactions. Inorg. Chem. 61, 8339–8348 (2022).

    PubMed  CAS  Google Scholar 

  44. Bien, C. E. et al. Bioinspired metal–organic framework for trace CO2 capture. J. Am. Chem. Soc. 140, 12662–12666 (2018).

    PubMed  CAS  Google Scholar 

  45. Ketchie, W., Murayama, M. & Davis, R. Promotional effect of hydroxyl on the aqueous phase oxidation of carbon monoxide and glycerol over supported Au catalysts. Top. Catal. 44, 307 (2007).

    CAS  Google Scholar 

  46. Kühne, T. D. et al. CP2K: an electronic structure and molecular dynamics software package—Quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).

    PubMed  Google Scholar 

  47. VandeVondele, J. et al. QUICKSTEP: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).

    CAS  Google Scholar 

  48. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. J. Phys. Rev. 140, A1133–A1138 (1965).

    Google Scholar 

  49. VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).

    PubMed  Google Scholar 

  50. Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).

    CAS  Google Scholar 

  51. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    CAS  Google Scholar 

  52. Blochl, P. E., Jepsen, O. & Andersen, O. K. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 50, 17953–17979 (1994).

    CAS  Google Scholar 

  53. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    PubMed  CAS  Google Scholar 

  54. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Google Scholar 

  55. Chu, W. et al. Ultrafast dynamics of photongenerated holes at a CH3OH/TiO2 rutile interface. J. Am. Chem. Soc. 138, 13740–13749 (2016).

    PubMed  CAS  Google Scholar 

  56. Craig, C. F., Duncan, W. R. & Prezhdo, O. V. Trajectory surface hopping in the time-dependent Kohn–Sham approach for electron-nuclear dynamics. Phys. Rev. Lett. 95, 163001 (2005).

    PubMed  Google Scholar 

  57. Akimov, A. V. & Prezhdo, O. V. The PYXAID program for non-adiabatic molecular dynamics in condensed matter systems. J. Chem. Theory and Comput. 9, 4959–4972 (2013).

    CAS  Google Scholar 

  58. Akimov, A. V. & Prezhdo, O. V. Advanced capabilities of the PYXAID program: integration schemes, decoherence effects, multiexcitonic states, and field–matter interaction. J. Chem. Theory Comput. 10, 789–804 (2014).

    PubMed  CAS  Google Scholar 

  59. Nose, S. A unified formulation of the constant temperature molecular-dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    CAS  Google Scholar 

  60. Barducci, A., Bussi, G. & Parrinello, M. Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys. Rev. Lett. 100, 020603 (2008).

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (2021YFA1500400 H.-L.J.), the NSFC (22331009 H.-L.J., U22A20401 H.-L.J., 22025304 J.J., 22033007 J.J., 22303091 Y.H.), the Strategic Priority Research Program of the CAS (XDB0450302 H.-L.J. and XDB0540000 H.-L.J.), the Innovation Program for Quantum Science and Technology (2021ZD0303303 J.J.), the CAS Project for Young Scientists in Basic Research (YSBR-005 J.J.), the International Partnership Program of CAS (123GJHZ2022028MI H.-L.J.), the China Postdoctoral Science Foundation (BX20230348 K.S., 2023M743374 K.S.) and the Xiaomi Young Scholars from Xiaomi Foundation. We thank J. Zhao for the use of the Hefei-NAMD code and G. Xu for the variable-temperature electrical measurements. This work was partially carried out at the Instruments Center for Physical Science, University of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Contributions

H.-L.J. conceived the idea, and supervised and directed the project. K.S. and J.W. performed the experiments. Y.H. and J.J. performed the theoretical calculations. F.S. and F.F. conducted the photon-irradiated Kelvin probe force microscopy experiments. Q.W. and X.Z. helped with the synchrotron XPS and sXAS measurements. Q.Z. and Y.Z. studied the femtosecond transient absorption spectra. Y.L. provided constructive discussions. H.-L.J. and K.S. analysed the data and co-wrote the paper. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Jun Jiang or Hai-Long Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Sergio Navalon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussions 1–7, Figs. 1–86 and Tables 1–7.

Source data

Source Data Fig. 1

SEM image for MOF.

Source Data Fig. 2

Analysis of orbitals and structures.

Source Data Fig. 3

Photocatalytic performance.

Source Data Fig. 4

Charge separation and proton migration performance.

Source Data Fig. 5

Performance comparison of CFA-Zn and CFA-Zn/Con.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, K., Huang, Y., Sun, F. et al. Dynamic structural twist in metal–organic frameworks enhances solar overall water splitting. Nat. Chem. (2024). https://doi.org/10.1038/s41557-024-01599-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-024-01599-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing