Abstract
Photocatalytic overall water splitting holds great promise for solar-to-hydrogen conversion. Maintaining charge separation is a major challenge but is key to unlocking this potential. Here we discovered a metal–organic framework (MOF) that shows suppressed charge recombination. This MOF features electronically insulated Zn2+ nodes and two chemically equivalent, yet crystallographically independent, linkers. These linkers behave as an electron donor–acceptor pair with non-overlapping band edges. Upon photoexcitation, the MOF undergoes a dynamic excited-state structural twist, inducing orbital rearrangements that forbid radiative relaxation and thereby promote a long-lived charge-separated state. As a result, the MOF achieves visible-light photocatalytic overall water splitting, in the presence of co-catalysts, with an apparent quantum efficiency of 3.09 ± 0.32% at 365 nm and shows little activity loss in 100 h of consecutive runs. Furthermore, the dynamic excited-state structural twist is also successfully extended to other photocatalysts. This strategy for suppressing charge recombination will be applicable to diverse photochemical processes beyond overall water splitting.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
Additional discussions and data supporting this article are available in the Supplementary Information. Source data are provided with this paper.
References
Hisatomi, T. & Domen, K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat. Catal. 2, 387–399 (2019).
Liu, M. et al. Photocatalytic hydrogen production using twinned nanocrystals and an unanchored NiSx co-catalyst. Nat. Energy 1, 16151 (2016).
Ran, J. et al. NiPS3 ultrathin nanosheets as versatile platform advancing highly active photocatalytic H2 production. Nat. Commun. 13, 4600 (2022).
Wang, X. et al. Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nat. Chem. 10, 1180–1189 (2018).
Kosco, J. et al. Generation of long-lived charges in organic semiconductor heterojunction nanoparticles for efficient photocatalytic hydrogen evolution. Nat. Energy 7, 340–351 (2022).
Wang, Z., Li, C. & Domen, K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem. Soc. Rev. 48, 2109–2125 (2019).
Wang, Q., Pornrungroj, C., Linley, S. & Reisner, E. Strategies to improve light utilization in solar fuel synthesis. Nat. Energy 7, 13–24 (2022).
Zou, Z., Ye, J., Sayama, K. & Arakawa, H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414, 625–627 (2001).
Liu, J. et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347, 970–974 (2015).
Takata, T. et al. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 581, 411–414 (2020).
Nishiyama, H. et al. Photocatalytic solar hydrogen production from water on a 100-m2 scale. Nature 598, 304–307 (2021).
Zhou, P. et al. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature 613, 66–70 (2023).
Zhang, G., Lan, Z.-A., Lin, L., Lin, S. & Wang, X. Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents. Chem. Sci. 7, 3062–3066 (2016).
Song, X. et al. Overall photocatalytic water splitting by an organolead iodide crystalline material. Nat. Catal. 3, 1027–1033 (2020).
Larom, S., Salama, F., Schuster, G. & Adir, N. Engineering of an alternative electron transfer path in photosystem II. Proc. Natl Acad. Sci. USA 107, 9650–9655 (2010).
Dods, R. et al. Ultrafast structural changes within a photosynthetic reaction centre. Nature 589, 310–314 (2021).
Grabowski, Z. R., Rotkiewicz, K. & Rettig, W. Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem. Rev. 103, 3899–4032 (2003).
Wang, Y. et al. Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts. Nat. Energy 4, 746–760 (2019).
Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).
Li, G., Zhao, S., Zhang, Y. & Tang, Z. Metal–organic frameworks encapsulating active nanoparticles as emerging composites for catalysis: recent progress and perspectives. Adv. Mater. 30, 1800702 (2018).
Hu, H. et al. Metal–organic frameworks embedded in a liposome facilitate overall photocatalytic water splitting. Nat. Chem. 13, 358–366 (2021).
Stanley, P. M., Haimerl, J., Shustova, N. B., Fischer, R. A. & Warnan, J. Merging molecular catalysts and metal–organic frameworks for photocatalytic fuel production. Nat. Chem. 14, 1342–1356 (2022).
Navalón, S., Dhakshinamoorthy, A., Álvaro, M., Ferrer, B. & García, H. Metal–organic frameworks as photocatalysts for solar-driven overall water splitting. Chem. Rev. 123, 445–490 (2023).
Nguyen, H. L. Metal–organic frameworks for photocatalytic water splitting. Sol. RRL 5, 2100198 (2021).
Nguyen, H. L. Metal–organic frameworks can photocatalytically split water—why not? Adv. Mater. 34, 2200465 (2022).
Jiao, L., Wang, J. & Jiang, H.-L. Microenvironment modulation in metal–organic framework-based catalysis. Acc. Mater. Res. 2, 327–339 (2021).
Schmieder, P. et al. CFA-1: the first chiral metal–organic framework containing Kuratowski-type secondary building units. Dalton Trans. 42, 10786–10797 (2013).
Braslavsky, S. E. et al. Glossary of terms used in photocatalysis and radiation catalysis (IUPAC Recommendations 2011). Pure Appl. Chem. 83, 931–1014 (2011).
Lachmanová, Š. et al. Kinetics of multielectron transfers and redox-induced structural changes in N-aryl-expanded pyridiniums: establishing their unusual, versatile electrophoric activity. J. Am. Chem. Soc. 137, 11349–11364 (2015).
Damrauer, N. H. et al. Effects of intraligand electron delocalization, steric tuning, and excited-state vibronic coupling on the photophysics of aryl-substituted bipyridyl complexes of Ru(II). J. Am. Chem. Soc. 119, 8253–8268 (1997).
Wang, H. et al. High quantum efficiency of hydrogen production from methanol aqueous solution with PtCu–TiO2 photocatalysts. Nat. Mater. 22, 619–626 (2023).
Fu, C. et al. Spontaneous bulk-surface charge separation of TiO2-{001} nanocrystals leads to high activity in photocatalytic methane combustion. ACS Catal. 12, 6457–6463 (2022).
An, Y. et al. NiII coordination to an Al-based metal-organic framework made from 2-aminoterephthalate for photocatalytic overall water splitting. Angew. Chem. Int. Ed. 56, 3036–3040 (2017).
Zhang, J. et al. Metal–organic-framework-based photocatalysts optimized by spatially separated cocatalysts for overall water splitting. Adv. Mater. 32, 2004747 (2020).
Salcedo-Abraira, P. et al. A novel porous Ti-squarate as efficient photocatalyst in the overall water splitting reaction under simulated sunlight irradiation. Adv. Mater. 33, 2106627 (2021).
Nyakuchena, J. et al. Direct evidence of photoinduced charge transport mechanism in 2D conductive metal organic frameworks. J. Am. Chem. Soc. 142, 21050–21058 (2020).
Shi, M. et al. Intrinsic facet-dependent reactivity of well-defined BiOBr nanosheets on photocatalytic water splitting. Angew. Chem. Int. Ed. 59, 6590–6595 (2020).
Liu, Y. et al. Phase-enabled metal–organic framework homojunction for highly selective CO2 photoreduction. Nat. Commun. 12, 1231 (2021).
Bottaro, S. & Lindorff-Larsen, K. Biophysical experiments and biomolecular simulations: a perfect match? Science 361, 355–360 (2018).
Hu, S. et al. Proton transport through one-atom-thick crystals. Nature 516, 227–230 (2014).
Santaclara, J. G. et al. Organic linker defines the excited-state decay of photocatalytic MIL-125(Ti)-type materials. ChemSusChem 9, 388–395 (2016).
Rachuri, Y., Parmar, B., Bisht, K. K. & Suresh, E. Mixed ligand two dimensional Cd(II)/Ni(II) metal organic frameworks containing dicarboxylate and tripodal N-donor ligands: Cd(II) MOF is an efficient luminescent sensor for detection of picric acid in aqueous media. Dalton Trans. 45, 7881–7892 (2016).
Huang, G.-Q. et al. Mixed-linker isoreticular Zn(II) metal–organic frameworks as Brønsted acid–base bifunctional catalysts for Knoevenagel condensation reactions. Inorg. Chem. 61, 8339–8348 (2022).
Bien, C. E. et al. Bioinspired metal–organic framework for trace CO2 capture. J. Am. Chem. Soc. 140, 12662–12666 (2018).
Ketchie, W., Murayama, M. & Davis, R. Promotional effect of hydroxyl on the aqueous phase oxidation of carbon monoxide and glycerol over supported Au catalysts. Top. Catal. 44, 307 (2007).
Kühne, T. D. et al. CP2K: an electronic structure and molecular dynamics software package—Quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).
VandeVondele, J. et al. QUICKSTEP: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).
Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. J. Phys. Rev. 140, A1133–A1138 (1965).
VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).
Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).
Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).
Blochl, P. E., Jepsen, O. & Andersen, O. K. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 50, 17953–17979 (1994).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).
Chu, W. et al. Ultrafast dynamics of photongenerated holes at a CH3OH/TiO2 rutile interface. J. Am. Chem. Soc. 138, 13740–13749 (2016).
Craig, C. F., Duncan, W. R. & Prezhdo, O. V. Trajectory surface hopping in the time-dependent Kohn–Sham approach for electron-nuclear dynamics. Phys. Rev. Lett. 95, 163001 (2005).
Akimov, A. V. & Prezhdo, O. V. The PYXAID program for non-adiabatic molecular dynamics in condensed matter systems. J. Chem. Theory and Comput. 9, 4959–4972 (2013).
Akimov, A. V. & Prezhdo, O. V. Advanced capabilities of the PYXAID program: integration schemes, decoherence effects, multiexcitonic states, and field–matter interaction. J. Chem. Theory Comput. 10, 789–804 (2014).
Nose, S. A unified formulation of the constant temperature molecular-dynamics methods. J. Chem. Phys. 81, 511–519 (1984).
Barducci, A., Bussi, G. & Parrinello, M. Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys. Rev. Lett. 100, 020603 (2008).
Acknowledgements
This work was financially supported by the National Key Research and Development Program of China (2021YFA1500400 H.-L.J.), the NSFC (22331009 H.-L.J., U22A20401 H.-L.J., 22025304 J.J., 22033007 J.J., 22303091 Y.H.), the Strategic Priority Research Program of the CAS (XDB0450302 H.-L.J. and XDB0540000 H.-L.J.), the Innovation Program for Quantum Science and Technology (2021ZD0303303 J.J.), the CAS Project for Young Scientists in Basic Research (YSBR-005 J.J.), the International Partnership Program of CAS (123GJHZ2022028MI H.-L.J.), the China Postdoctoral Science Foundation (BX20230348 K.S., 2023M743374 K.S.) and the Xiaomi Young Scholars from Xiaomi Foundation. We thank J. Zhao for the use of the Hefei-NAMD code and G. Xu for the variable-temperature electrical measurements. This work was partially carried out at the Instruments Center for Physical Science, University of Science and Technology of China.
Author information
Authors and Affiliations
Contributions
H.-L.J. conceived the idea, and supervised and directed the project. K.S. and J.W. performed the experiments. Y.H. and J.J. performed the theoretical calculations. F.S. and F.F. conducted the photon-irradiated Kelvin probe force microscopy experiments. Q.W. and X.Z. helped with the synchrotron XPS and sXAS measurements. Q.Z. and Y.Z. studied the femtosecond transient absorption spectra. Y.L. provided constructive discussions. H.-L.J. and K.S. analysed the data and co-wrote the paper. All authors discussed the results and commented on the paper.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Chemistry thanks Sergio Navalon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Discussions 1–7, Figs. 1–86 and Tables 1–7.
Source data
Source Data Fig. 1
SEM image for MOF.
Source Data Fig. 2
Analysis of orbitals and structures.
Source Data Fig. 3
Photocatalytic performance.
Source Data Fig. 4
Charge separation and proton migration performance.
Source Data Fig. 5
Performance comparison of CFA-Zn and CFA-Zn/Con.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sun, K., Huang, Y., Sun, F. et al. Dynamic structural twist in metal–organic frameworks enhances solar overall water splitting. Nat. Chem. 16, 1638–1646 (2024). https://doi.org/10.1038/s41557-024-01599-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41557-024-01599-6