Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Triplet carbenes with transition-metal substituents

Subjects

Abstract

The extraordinary advances in carbene (R1–C–R2) chemistry have been fuelled by strategies to stabilize the electronic singlet state via π interactions. In contrast, the lack of similarly efficient approaches to obtain authentic triplet carbenes with appreciable lifetimes beyond cryogenic temperatures hampers their exploitation in synthesis and catalysis. Transition-metal substitution represents a potential strategy, but metallocarbenes (M–C–R) usually represent high-lying excited electronic configurations of the well-established carbyne complexes (M≡C–R). Here we report the synthesis and characterization of triplet metallocarbenes (M–C–SiMe3, M = PdII, PtII) that are persistent beyond cryogenic conditions, and their selective reactivity towards carbene C–H insertion and carbonylation. Bond analysis reveals significant stabilization by spin-polarized push–pull interactions along both π-bonding planes, which fundamentally differs from bonding in push–pull singlet carbenes. This bonding model, thus, expands key strategies for stabilizing the open-shell carbene electromers and closes a conceptual gap towards carbyne complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemical strategies for the stabilization of singlet versus triplet carbenes.
Fig. 2: Photochemical reactivity of the diazoalkyl complexes.
Fig. 3: Experimental electronic structure characterization.
Fig. 4: Photochemical crystal-to-crystal conversion experiments.
Fig. 5: Quantum-chemical electronic structure characterization of 5a.

Similar content being viewed by others

Data availability

All data generated and analysed during this study are included in this article and its Supplementary Information or are available from the corresponding authors upon reasonable request. The spectroscopic, magnetic and computational source data have been deposited in the data repository of the Göttingen research alliance (GRO.data) and can be retrieved at https://doi.org/10.25625/DIE64H. Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2320937 (1a), 2320938 (1b), 2320939 (2a), 2320940 (2b), 2320941 (3), 2320942 (4), 2320943 (5a), 2320944 (5b), 2320945 (2b′) and 2320946 (6). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Igau, A., Grutzmacher, H., Baceiredo, A. & Bertrand, G. Analogous α,α′-bis-carbenoid, triply bonded species: synthesis of a stable λ3-phosphino carbene-λ5-phosphaacetylene. J. Am. Chem. Soc. 110, 6463–6466 (1988).

    Article  CAS  Google Scholar 

  2. Arduengo, A. J. III, Harlow, R. L. & Kline, M. A stable crystalline carbene. J. Am. Chem. Soc. 113, 361–363 (1991).

    Article  CAS  Google Scholar 

  3. Buron, C., Gornitzka, H., Romanenko, V. & Bertrand, G. Stable versions of transient push–pull carbenes: extending lifetimes from nanoseconds to weeks. Science 288, 834–836 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Bourissou, D., Guerret, D., Gabbaï, F. P. & Bertrand, G. Stable carbenes. Chem. Rev. 100, 39–92 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Mercs, L. & Albrecht, M. Beyond catalysis: N-heterocyclic carbene complexes as components for medicinal, luminescent, and functional materials applications. Chem. Soc. Rev. 39, 1903–1912 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Hopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. An overview of N-heterocyclic carbenes. Nature 510, 485–496 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Zhukhovitskiy, A. V., MacLeod, M. J. & Johnson, J. A. Carbene ligands in surface chemistry: from stabilization of discrete elemental allotropes to modification of nanoscale and bulk substrates. Chem. Rev. 115, 11503–11532 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Melaimi, M., Jazzar, R., Sloeilhavoup, M. & Bertrand, G. Cyclic (alkyl)(amino)carbenes (CAACs): recent developments. Angew. Chem. Int. Ed. 56, 10046–10068 (2017).

    Article  CAS  Google Scholar 

  9. Bellotti, P., Koy, M., Hopkinson, M. N. & Glorius, F. Recent advances in the chemistry and applications of N-heterocyclic carbenes. Nat. Rev. Chem. 5, 711–725 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Huynh, H. V. Electronic properties of N-heterocyclic carbenes and their experimental determination. Chem. Rev. 118, 9457–9492 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Vignolle, J., Cattoën, X. & Bourissou, D. Stable noncyclic carbenes. Chem. Rev. 109, 3333–3384 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Hu, C., Wang, X.-F., Li, J., Chang, X.-Y. & Liu, L. L. A stable rhodium-coordinated carbene with a σ0π2 electronic configuration. Science 383, 81–85 (2024).

    Article  CAS  PubMed  Google Scholar 

  13. Shibutani, Y., Kusumoto, S. & Nozaki, K. Synthesis, characterization, and trapping of a cyclic diborylcarbene, an electrophilic carbene. J. Am. Chem. Soc. 145, 16186–16192 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Kato, T., Gornitzka, H., Baceiredo, A., Savin, A. & Bertrand, G. On the electronic structure of (phosphino)(silyl)carbenes: single-crystal X-ray diffraction and ELF analyses. J. Am. Chem. Soc. 122, 998–999 (2000).

    Article  CAS  Google Scholar 

  15. Hirai, K., Itoh, T. & Tomioka, H. Persistent triplet carbenes. Chem. Rev. 109, 3275–3332 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Kutin, Y. et al. Characterization of a triplet vinylidene. J. Am. Chem. Soc. 143, 21410–21415 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tomioka, H., Iwamoto, E., Itakura, H. & Hirai, K. Generation and characterization of a fairly stable triplet carbene. Nature 412, 626–628 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Trindle, C. DFT studies of biarylcarbenes and the carbene–biradical continuum. J. Org. Chem. 68, 9669–9677 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Trindle, C. Post-Hartree–Fock studies on the structure of bis(ortho-substituted phenyl)methylenes. J. Phys. Chem. A 109, 898–904 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Nemirowski, A. & Schreiner, P. R. Electronic stabilization of ground state triplet carbenes. J. Org. Chem. 72, 9533–9549 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Schreiner, P. R., Reisenauer, H. P., Sattelmeyer, K. W. & Allen, W. D. H–C–SiMe3: direct generation and spectroscopic identification of ethylidine’s cousin. J. Am. Chem. Soc. 127, 12156–12157 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. McKellar, A. R. W. et al. Far infrared laser magnetic resonance of singlet methylene: singlet–triplet perturbations, singlet–triplet transitions, and singlet–triplet splitting. J. Chem. Phys. 79, 5251–5264 (1983).

    Article  CAS  Google Scholar 

  23. Montgomery, J. M., Alexander, E. & Mazziotti, D. A. Prediction of the existence of LiCH: a carbene-like organometallic molecule. J. Phys. Chem. A 124, 9562–9566 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Lv, Z.-J. & Schneider, S. Carbynes reloaded: isolation of singlet metallocarbenes. Chem 8, 2066–2068 (2022).

    Article  CAS  Google Scholar 

  25. Schrock, R. R. High oxidation state multiple metal–carbon bonds. Chem. Rev. 102, 145–180 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Cui, M. & Jia, G. Organometallic chemistry of transition metal alkylidyne complexes centered at metathesis reactions. J. Am. Chem. Soc. 144, 12546–12566 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Rommens, K. T. & Saeys, M. Molecular views on Fischer–Tropsch synthesis. Chem. Rev. 123, 5798–5858 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Frenking, G. & Fröhlich, N. The nature of the bonding in transition-metal compounds. Chem. Rev. 100, 717–774 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Da Re, R. E. & Hopkins, M. D. Electronic spectroscopy and photophysics of metal–alkylidyne complexes. Coord. Chem. Rev. 249, 1396–1409 (2005).

    Article  Google Scholar 

  30. Morales-Verdejo, C. A., Newsom, M. I., Cohen, B. W., Vibbert, H. B. & Hopkins, M. D. Dihydrogen activation by a tungsten–alkylidyne complex: toward photoredox chromophores that deliver renewable reducing equivalents. Chem. Commun. 49, 10566–10568 (2013).

    Article  CAS  Google Scholar 

  31. Citek, C., Oyala, P. H. & Peters, J. C. Mononuclear Fe(I) and Fe(II) acetylene adducts and their reductive protonation to terminal Fe(IV) and Fe(V) carbynes. J. Am. Chem. Soc. 141, 15211–15221 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Arnett, C. H. & Agapie, T. Activation of an open shell, carbyne-bridged diiron complex toward binding of dinitrogen. J. Am. Chem. Soc. 142, 10059–10068 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Bailey, G. A., Buss, J. A., Oyala, P. H. & Agapie, T. Terminal, open-shell Mo carbide and carbyne complexes: spin delocalization and ligand noninnocence. J. Am. Chem. Soc. 143, 13091–13102 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Rao, J. et al. A Triplet iron carbyne complex. J. Am. Chem. Soc. 145, 25766–25775 (2023).

    Article  CAS  PubMed  Google Scholar 

  35. Kooij, B. et al. Copper complexes with diazoolefin ligands and their photochemical conversion into alkenylidene complexes. Angew. Chem. Int. Ed. 62, e202214899 (2023).

    Article  CAS  Google Scholar 

  36. Hu, C. et al. Crystalline monometal-substituted free carbenes. Chem 8, 2278–2289 (2022).

    Article  CAS  Google Scholar 

  37. Wei, R., Wang, X.-F., Hu, C. & Liu, L. L. Synthesis and reactivity of copper carbyne anion complexes. Nat. Synth. 2, 357–363 (2023).

    Article  Google Scholar 

  38. Sun, J. et al. A platinum(II) metallonitrene with a triplet ground state. Nat. Chem. 12, 1054–1059 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Schmidt-Räntsch, T. et al. Nitrogen atom transfer catalysis by metallonitrene C–H insertion: photocatalytic amidation of aldehydes. Angew. Chem. Int. Ed. 61, e202115626 (2022).

    Article  Google Scholar 

  40. Lv, Z.-J. et al. Stabilizing doubly deprotonated diazomethane: isolable complexes with CN22− and CN2 radical ligands. J. Am. Chem. Soc. 144, 21872–21877 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Kawano, M., Hirai, K., Tomioka, H. & Ohashi, Y. Structure analysis of a transient triplet carbene trapped in a crystal. J. Am. Chem. Soc. 123, 6904–6908 (2001).

    Article  CAS  Google Scholar 

  42. Kawano, M., Hirai, K., Tomioka, H. & Ohashi, Y. Structure determination of triplet diphenylcarbenes by in situ X-ray crystallographic analysis. J. Am. Chem. Soc. 129, 2383–2391 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Nakajo, T. et al. Triplet carbene with highly enhanced thermal stability in the nanospace of a metal–organic framework. J. Am. Chem. Soc. 143, 8129–8136 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Das, A., Reibenspies, J. H., Chen, Y.-S. & Powers, D. C. Direct characterization of a reactive lattice-confined Ru2 nitride by photocrystallography. J. Am. Chem. Soc. 139, 2912–2915 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Das, A., Chen, Y.-S., Reibenspies, J. H. & Powers, D. C. Characterization of a reactive Rh2 nitrenoid by crystalline matrix isolation. J. Am. Chem. Soc. 141, 16232–16236 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Das, A. et al. In crystallo snapshots of Rh2-catalyzed C–H amination. J. Am. Chem. Soc. 142, 19862–19867 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Jung, H. et al. Mechanistic snapshots of rhodium-catalyzed acylnitrene transfer reactions. Science 381, 525–532 (2023).

    Article  CAS  PubMed  Google Scholar 

  48. Matsumura, N. et al. Synthesis of new transition metal carbene complexes from π-sulfurane compounds: reaction of 10-S-3 tetraazapentalene derivatives with Pd(PPh3)4 and RhCl(PPh3)3. J. Am. Chem. Soc. 117, 3623–3624 (1995).

    Article  CAS  Google Scholar 

  49. Comanescu, C. C. & Iluc, V. M. Synthesis and reactivity of a nucleophilic palladium(II) carbene. Organometallics 33, 6059–6064 (2014).

    Article  CAS  Google Scholar 

  50. Pyykkö, P. Additive covalent radii for single-, double-, and triple-bonded molecules and tetrahedrally bonded crystals: a summary. J. Phys. Chem. A 119, 2326–2337 (2015).

    Article  PubMed  Google Scholar 

  51. Mann, J. B., Meek, T. L., Knight, E. T., Capitani, J. F. & Allen, L. C. Configuration energies of the d-block elements. J. Am. Chem. Soc. 122, 5132–5137 (2000).

    Article  CAS  Google Scholar 

  52. Hoffmann, R. et al. From widely accepted concepts in coordination chemistry to inverted ligand fields. Chem. Rev. 116, 8173–8192 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.S. thanks the Deutsche Forschungsgemeinschaft for support (Priority Program 2102, grant SCHN950/6-2). Z.-J.L. is grateful to the Alexander von Humboldt Foundation for a postdoctoral financial support and D.-J. Hong for help with X-ray crystallography. P. D. Engel and N. Wegerich are acknowledged for support of the quantum-chemical study. Quantum-chemical calculations were performed at the Center for Scientific Computing (CSC) Frankfurt on the Goethe and Fuchs high-performance computer clusters. The SQUID magnetometer was funded by the Deutsche Forschungsgemeinschaft (DFG, project number INST 186/1329-1 FUGG) and the Niedersächsisches Ministerium für Wissenschaft und Kultur.

Author information

Authors and Affiliations

Authors

Contributions

Z.-J.L., M.C.H. and S.S. conceived the work and designed the experiments. S.S. supervised the experimental study, and M.C.H supervised the quantum-chemical study. Z.-J.L. performed synthetic, spectroscopic and X-ray crystallographic work. Z.-J.L. and R.H.-I. performed the crystallographic data analyses. K.A.E. performed the computational work with support of H.V. for the ZFS computations. S.D. carried out the magnetic characterization. R.N. and T.R. carried out the low-temperature UV–vis spectroscopy supervised by K.H. All authors discussed the results in detail and commented on the manuscript.

Corresponding authors

Correspondence to Max C. Holthausen or Sven Schneider.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Liang Deng, William Lewis and David Wilson for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Detailed descriptions of experimental, spectroscopic, crystallographic and quantum-chemical methods and results.

Supplementary Data 1

Crystallographic data for 1a (CCDC 2320937).

Supplementary Data 2

Crystallographic data for 1b (CCDC 2320938).

Supplementary Data 3

Crystallographic data for 2a (CCDC 2320939).

Supplementary Data 4

Crystallographic data for 2b (CCDC 2320940).

Supplementary Data 5

Crystallographic data for 2b’ (CCDC 2320945).

Supplementary Data 6

Crystallographic data for 3 (CCDC 2320941).

Supplementary Data 7

Crystallographic data for 4 (CCDC 2320942).

Supplementary Data 8

Crystallographic data for 5a (CCDC 2320943).

Supplementary Data 9

Crystallographic data for 5b (CCDC 2320944).

Supplementary Data 10

Crystallographic data for 6 (CCDC 2320946).

Supplementary Data 11

Computational optimized coordinates.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, ZJ., Eisenlohr, K.A., Naumann, R. et al. Triplet carbenes with transition-metal substituents. Nat. Chem. (2024). https://doi.org/10.1038/s41557-024-01597-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-024-01597-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing