Abstract
The extraordinary advances in carbene (R1–C–R2) chemistry have been fuelled by strategies to stabilize the electronic singlet state via π interactions. In contrast, the lack of similarly efficient approaches to obtain authentic triplet carbenes with appreciable lifetimes beyond cryogenic temperatures hampers their exploitation in synthesis and catalysis. Transition-metal substitution represents a potential strategy, but metallocarbenes (M–C–R) usually represent high-lying excited electronic configurations of the well-established carbyne complexes (M≡C–R). Here we report the synthesis and characterization of triplet metallocarbenes (M–C–SiMe3, M = PdII, PtII) that are persistent beyond cryogenic conditions, and their selective reactivity towards carbene C–H insertion and carbonylation. Bond analysis reveals significant stabilization by spin-polarized push–pull interactions along both π-bonding planes, which fundamentally differs from bonding in push–pull singlet carbenes. This bonding model, thus, expands key strategies for stabilizing the open-shell carbene electromers and closes a conceptual gap towards carbyne complexes.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
All data generated and analysed during this study are included in this article and its Supplementary Information or are available from the corresponding authors upon reasonable request. The spectroscopic, magnetic and computational source data have been deposited in the data repository of the Göttingen research alliance (GRO.data) and can be retrieved at https://doi.org/10.25625/DIE64H. Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2320937 (1a), 2320938 (1b), 2320939 (2a), 2320940 (2b), 2320941 (3), 2320942 (4), 2320943 (5a), 2320944 (5b), 2320945 (2b′) and 2320946 (6). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.
References
Igau, A., Grutzmacher, H., Baceiredo, A. & Bertrand, G. Analogous α,α′-bis-carbenoid, triply bonded species: synthesis of a stable λ3-phosphino carbene-λ5-phosphaacetylene. J. Am. Chem. Soc. 110, 6463–6466 (1988).
Arduengo, A. J. III, Harlow, R. L. & Kline, M. A stable crystalline carbene. J. Am. Chem. Soc. 113, 361–363 (1991).
Buron, C., Gornitzka, H., Romanenko, V. & Bertrand, G. Stable versions of transient push–pull carbenes: extending lifetimes from nanoseconds to weeks. Science 288, 834–836 (2000).
Bourissou, D., Guerret, D., Gabbaï, F. P. & Bertrand, G. Stable carbenes. Chem. Rev. 100, 39–92 (2000).
Mercs, L. & Albrecht, M. Beyond catalysis: N-heterocyclic carbene complexes as components for medicinal, luminescent, and functional materials applications. Chem. Soc. Rev. 39, 1903–1912 (2010).
Hopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. An overview of N-heterocyclic carbenes. Nature 510, 485–496 (2014).
Zhukhovitskiy, A. V., MacLeod, M. J. & Johnson, J. A. Carbene ligands in surface chemistry: from stabilization of discrete elemental allotropes to modification of nanoscale and bulk substrates. Chem. Rev. 115, 11503–11532 (2015).
Melaimi, M., Jazzar, R., Sloeilhavoup, M. & Bertrand, G. Cyclic (alkyl)(amino)carbenes (CAACs): recent developments. Angew. Chem. Int. Ed. 56, 10046–10068 (2017).
Bellotti, P., Koy, M., Hopkinson, M. N. & Glorius, F. Recent advances in the chemistry and applications of N-heterocyclic carbenes. Nat. Rev. Chem. 5, 711–725 (2021).
Huynh, H. V. Electronic properties of N-heterocyclic carbenes and their experimental determination. Chem. Rev. 118, 9457–9492 (2018).
Vignolle, J., Cattoën, X. & Bourissou, D. Stable noncyclic carbenes. Chem. Rev. 109, 3333–3384 (2009).
Hu, C., Wang, X.-F., Li, J., Chang, X.-Y. & Liu, L. L. A stable rhodium-coordinated carbene with a σ0π2 electronic configuration. Science 383, 81–85 (2024).
Shibutani, Y., Kusumoto, S. & Nozaki, K. Synthesis, characterization, and trapping of a cyclic diborylcarbene, an electrophilic carbene. J. Am. Chem. Soc. 145, 16186–16192 (2023).
Kato, T., Gornitzka, H., Baceiredo, A., Savin, A. & Bertrand, G. On the electronic structure of (phosphino)(silyl)carbenes: single-crystal X-ray diffraction and ELF analyses. J. Am. Chem. Soc. 122, 998–999 (2000).
Hirai, K., Itoh, T. & Tomioka, H. Persistent triplet carbenes. Chem. Rev. 109, 3275–3332 (2009).
Kutin, Y. et al. Characterization of a triplet vinylidene. J. Am. Chem. Soc. 143, 21410–21415 (2021).
Tomioka, H., Iwamoto, E., Itakura, H. & Hirai, K. Generation and characterization of a fairly stable triplet carbene. Nature 412, 626–628 (2001).
Trindle, C. DFT studies of biarylcarbenes and the carbene–biradical continuum. J. Org. Chem. 68, 9669–9677 (2003).
Trindle, C. Post-Hartree–Fock studies on the structure of bis(ortho-substituted phenyl)methylenes. J. Phys. Chem. A 109, 898–904 (2005).
Nemirowski, A. & Schreiner, P. R. Electronic stabilization of ground state triplet carbenes. J. Org. Chem. 72, 9533–9549 (2007).
Schreiner, P. R., Reisenauer, H. P., Sattelmeyer, K. W. & Allen, W. D. H–C–SiMe3: direct generation and spectroscopic identification of ethylidine’s cousin. J. Am. Chem. Soc. 127, 12156–12157 (2005).
McKellar, A. R. W. et al. Far infrared laser magnetic resonance of singlet methylene: singlet–triplet perturbations, singlet–triplet transitions, and singlet–triplet splitting. J. Chem. Phys. 79, 5251–5264 (1983).
Montgomery, J. M., Alexander, E. & Mazziotti, D. A. Prediction of the existence of LiCH: a carbene-like organometallic molecule. J. Phys. Chem. A 124, 9562–9566 (2020).
Lv, Z.-J. & Schneider, S. Carbynes reloaded: isolation of singlet metallocarbenes. Chem 8, 2066–2068 (2022).
Schrock, R. R. High oxidation state multiple metal–carbon bonds. Chem. Rev. 102, 145–180 (2002).
Cui, M. & Jia, G. Organometallic chemistry of transition metal alkylidyne complexes centered at metathesis reactions. J. Am. Chem. Soc. 144, 12546–12566 (2022).
Rommens, K. T. & Saeys, M. Molecular views on Fischer–Tropsch synthesis. Chem. Rev. 123, 5798–5858 (2023).
Frenking, G. & Fröhlich, N. The nature of the bonding in transition-metal compounds. Chem. Rev. 100, 717–774 (2000).
Da Re, R. E. & Hopkins, M. D. Electronic spectroscopy and photophysics of metal–alkylidyne complexes. Coord. Chem. Rev. 249, 1396–1409 (2005).
Morales-Verdejo, C. A., Newsom, M. I., Cohen, B. W., Vibbert, H. B. & Hopkins, M. D. Dihydrogen activation by a tungsten–alkylidyne complex: toward photoredox chromophores that deliver renewable reducing equivalents. Chem. Commun. 49, 10566–10568 (2013).
Citek, C., Oyala, P. H. & Peters, J. C. Mononuclear Fe(I) and Fe(II) acetylene adducts and their reductive protonation to terminal Fe(IV) and Fe(V) carbynes. J. Am. Chem. Soc. 141, 15211–15221 (2019).
Arnett, C. H. & Agapie, T. Activation of an open shell, carbyne-bridged diiron complex toward binding of dinitrogen. J. Am. Chem. Soc. 142, 10059–10068 (2020).
Bailey, G. A., Buss, J. A., Oyala, P. H. & Agapie, T. Terminal, open-shell Mo carbide and carbyne complexes: spin delocalization and ligand noninnocence. J. Am. Chem. Soc. 143, 13091–13102 (2021).
Rao, J. et al. A Triplet iron carbyne complex. J. Am. Chem. Soc. 145, 25766–25775 (2023).
Kooij, B. et al. Copper complexes with diazoolefin ligands and their photochemical conversion into alkenylidene complexes. Angew. Chem. Int. Ed. 62, e202214899 (2023).
Hu, C. et al. Crystalline monometal-substituted free carbenes. Chem 8, 2278–2289 (2022).
Wei, R., Wang, X.-F., Hu, C. & Liu, L. L. Synthesis and reactivity of copper carbyne anion complexes. Nat. Synth. 2, 357–363 (2023).
Sun, J. et al. A platinum(II) metallonitrene with a triplet ground state. Nat. Chem. 12, 1054–1059 (2020).
Schmidt-Räntsch, T. et al. Nitrogen atom transfer catalysis by metallonitrene C–H insertion: photocatalytic amidation of aldehydes. Angew. Chem. Int. Ed. 61, e202115626 (2022).
Lv, Z.-J. et al. Stabilizing doubly deprotonated diazomethane: isolable complexes with CN22− and CN2− radical ligands. J. Am. Chem. Soc. 144, 21872–21877 (2022).
Kawano, M., Hirai, K., Tomioka, H. & Ohashi, Y. Structure analysis of a transient triplet carbene trapped in a crystal. J. Am. Chem. Soc. 123, 6904–6908 (2001).
Kawano, M., Hirai, K., Tomioka, H. & Ohashi, Y. Structure determination of triplet diphenylcarbenes by in situ X-ray crystallographic analysis. J. Am. Chem. Soc. 129, 2383–2391 (2007).
Nakajo, T. et al. Triplet carbene with highly enhanced thermal stability in the nanospace of a metal–organic framework. J. Am. Chem. Soc. 143, 8129–8136 (2021).
Das, A., Reibenspies, J. H., Chen, Y.-S. & Powers, D. C. Direct characterization of a reactive lattice-confined Ru2 nitride by photocrystallography. J. Am. Chem. Soc. 139, 2912–2915 (2017).
Das, A., Chen, Y.-S., Reibenspies, J. H. & Powers, D. C. Characterization of a reactive Rh2 nitrenoid by crystalline matrix isolation. J. Am. Chem. Soc. 141, 16232–16236 (2019).
Das, A. et al. In crystallo snapshots of Rh2-catalyzed C–H amination. J. Am. Chem. Soc. 142, 19862–19867 (2020).
Jung, H. et al. Mechanistic snapshots of rhodium-catalyzed acylnitrene transfer reactions. Science 381, 525–532 (2023).
Matsumura, N. et al. Synthesis of new transition metal carbene complexes from π-sulfurane compounds: reaction of 10-S-3 tetraazapentalene derivatives with Pd(PPh3)4 and RhCl(PPh3)3. J. Am. Chem. Soc. 117, 3623–3624 (1995).
Comanescu, C. C. & Iluc, V. M. Synthesis and reactivity of a nucleophilic palladium(II) carbene. Organometallics 33, 6059–6064 (2014).
Pyykkö, P. Additive covalent radii for single-, double-, and triple-bonded molecules and tetrahedrally bonded crystals: a summary. J. Phys. Chem. A 119, 2326–2337 (2015).
Mann, J. B., Meek, T. L., Knight, E. T., Capitani, J. F. & Allen, L. C. Configuration energies of the d-block elements. J. Am. Chem. Soc. 122, 5132–5137 (2000).
Hoffmann, R. et al. From widely accepted concepts in coordination chemistry to inverted ligand fields. Chem. Rev. 116, 8173–8192 (2016).
Acknowledgements
S.S. thanks the Deutsche Forschungsgemeinschaft for support (Priority Program 2102, grant SCHN950/6-2). Z.-J.L. is grateful to the Alexander von Humboldt Foundation for a postdoctoral financial support and D.-J. Hong for help with X-ray crystallography. P. D. Engel and N. Wegerich are acknowledged for support of the quantum-chemical study. Quantum-chemical calculations were performed at the Center for Scientific Computing (CSC) Frankfurt on the Goethe and Fuchs high-performance computer clusters. The SQUID magnetometer was funded by the Deutsche Forschungsgemeinschaft (DFG, project number INST 186/1329-1 FUGG) and the Niedersächsisches Ministerium für Wissenschaft und Kultur.
Author information
Authors and Affiliations
Contributions
Z.-J.L., M.C.H. and S.S. conceived the work and designed the experiments. S.S. supervised the experimental study, and M.C.H supervised the quantum-chemical study. Z.-J.L. performed synthetic, spectroscopic and X-ray crystallographic work. Z.-J.L. and R.H.-I. performed the crystallographic data analyses. K.A.E. performed the computational work with support of H.V. for the ZFS computations. S.D. carried out the magnetic characterization. R.N. and T.R. carried out the low-temperature UV–vis spectroscopy supervised by K.H. All authors discussed the results in detail and commented on the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Chemistry thanks Liang Deng, William Lewis and David Wilson for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Detailed descriptions of experimental, spectroscopic, crystallographic and quantum-chemical methods and results.
Supplementary Data 1
Crystallographic data for 1a (CCDC 2320937).
Supplementary Data 2
Crystallographic data for 1b (CCDC 2320938).
Supplementary Data 3
Crystallographic data for 2a (CCDC 2320939).
Supplementary Data 4
Crystallographic data for 2b (CCDC 2320940).
Supplementary Data 5
Crystallographic data for 2b’ (CCDC 2320945).
Supplementary Data 6
Crystallographic data for 3 (CCDC 2320941).
Supplementary Data 7
Crystallographic data for 4 (CCDC 2320942).
Supplementary Data 8
Crystallographic data for 5a (CCDC 2320943).
Supplementary Data 9
Crystallographic data for 5b (CCDC 2320944).
Supplementary Data 10
Crystallographic data for 6 (CCDC 2320946).
Supplementary Data 11
Computational optimized coordinates.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Lv, ZJ., Eisenlohr, K.A., Naumann, R. et al. Triplet carbenes with transition-metal substituents. Nat. Chem. (2024). https://doi.org/10.1038/s41557-024-01597-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41557-024-01597-8