Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Emerging chiral two-dimensional materials

Abstract

Research into 2D materials has been growing with impressive speed since the discovery of graphene. Such layered materials with ultrathin morphologies and extreme aspect ratios currently display a vast range of properties; however, until recently a conspicuously missing property of 2D materials was global chirality. The situation has changed over the past few years with the implementation of several distinct types of ultrathin chiral 2D crystals. Here we offer a forward-looking perspective on this field to comprehend the fundamentals of global chirality in two dimensions and develop new directions. We specifically discuss the experimental achievements of the emerging chiral 2D materials with a focus on their design strategy, synthesis, structural characterization, fundamental physical properties and possible applications. We will highlight how the molecular-scale local chirality could be significantly transmitted and amplified throughout ultrathin single-crystalline 2D structures, resulting in distinctive global chirality that brings more sophisticated functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Local structural characterization of chiral 2D MOFs.
Fig. 2: Syntheses and structural characterization of chiral 2D nanosheets by covalent or noncovalent assembly.
Fig. 3: Crystal structures of chiral 2D HOIPs.
Fig. 4: Syntheses and HR-TEM characterization of chiral 2D proteins.

Similar content being viewed by others

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Du, Z. et al. Conversion of non-van der Waals solids to 2D transition-metal chalcogenides. Nature 577, 492–496 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Varoon, K. et al. Dispersible exfoliated zeolite nanosheets and their application as a selective membrane. Science 334, 72–75 (2011).

    Article  CAS  Google Scholar 

  4. Ma, K. Y. et al. Epitaxial single-crystal hexagonal boron nitride multilayers on Ni (111). Nature 606, 88–93 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Wu, Z. et al. Large-scale growth of few-layer two-dimensional black phosphorus. Nat. Mater. 20, 1203–1209 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Li, Y. et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19, 894–899 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Dou, L. et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science 349, 1518–1521 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Datta, S. J. et al. Rational design of mixed-matrix metal-organic framework membranes for molecular separations. Science 376, 1080–1087 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Liu, K. et al. On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers. Nat. Chem. 11, 994–1000 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Chakraborty, G., Park, I.-H., Medishetty, R. & Vittal, J. J. Two-dimensional metal–organic framework materials: synthesis, structures, properties and applications. Chem. Rev. 121, 3751–3891 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 9, 9451–9469 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Tan, C. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016).

    Article  CAS  Google Scholar 

  14. Chen, Y. et al. Two-dimensional metal nanomaterials: synthesis, properties, and applications. Chem. Rev. 118, 6409–6455 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Pham, P. V. et al. 2D heterostructures for ubiquitous electronics and optoelectronics: Principles, opportunities, and challenges. Chem. Rev. 122, 6514–6613 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Hu, C.-X., Shin, Y., Read, O. & Casiraghi, C. Dispersant-assisted liquid-phase exfoliation of 2D materials beyond graphene. Nanoscale 13, 460–484 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Mendes, R. G. et al. Electron-driven in situ transmission electron microscopy of 2D transition metal dichalcogenides and their 2D heterostructures. ACS Nano 13, 978–995 (2019).

    CAS  PubMed  Google Scholar 

  18. Backes, C. et al. Guidelines for exfoliation, characterization and processing of layered materials produced by liquid exfoliation. Chem. Mater. 29, 243–255 (2017).

    Article  CAS  Google Scholar 

  19. Shen, B., Kim, Y. & Lee, M. Supramolecular chiral 2D materials and emerging functions. Adv. Mater. 32, 1905669 (2020).

    Article  CAS  Google Scholar 

  20. Gong, W., Chen, Z., Dong, J., Liu, Y. & Cui, Y. Chiral metal–organic frameworks. Chem. Rev. 122, 9078–9144 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Dong, J. et al. Free-standing homochiral 2D monolayers by exfoliation of molecular crystals. Nature 602, 606–611 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Livnah, O., Bayer, E. A., Wilchek, M. & Sussman, J. L. Three-dimensional structures of avidin and the avidin-biotin complex. Proc. Natl Acad. Sci. USA 90, 5076–5080 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guo, J. et al. Ultrathin chiral metal–organic-framework nanosheets for efficient enantioselective separation. Angew. Chem. Int. Ed. 57, 6873–6877 (2018).

    Article  CAS  Google Scholar 

  24. Tan, C. et al. Boosting enantioselectivity of chiral organocatalysts with ultrathin two-dimensional metal–organic framework nanosheets. J. Am. Chem. Soc. 141, 17685–17695 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Makam, P. et al. Single amino acid bionanozyme for environmental remediation. Nat. Commun. 13, 1505 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, L., Zhang, D., Zhu, Y. & Han, Y. Bulk and local structures of metal–organic frameworks unravelled by high-resolution electron microscopy. Commun. Chem. 3, 99 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, D. et al. Atomic-resolution transmission electron microscopy of electron beam–sensitive crystalline materials. Science 359, 675–679 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Liu, Y. et al. Single-crystalline ultrathin 2D porous nanosheets of chiral metal–organic frameworks. J. Am. Chem. Soc. 143, 3509–3518 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Guo, Y., Nuermaimaiti, A., Kjeldsen, N. D., Gothelf, K. V. & Linderoth, T. R. Two-dimensional coordination networks from cyclic dipeptides. J. Am. Chem. Soc. 142, 19814–19818 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Geng, K. et al. Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 120, 8814–8933 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Han, X. et al. Chiral covalent organic frameworks: design, synthesis and property. Chem. Soc. Rev. 49, 6248–6272 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Dong, J., Han, X., Liu, Y., Li, H. & Cui, Y. Metal–covalent organic frameworks (MCOFs): a bridge between metal–organic frameworks and covalent organic frameworks. Angew. Chem. Int. Ed. 59, 13722–13733 (2020).

    Article  CAS  Google Scholar 

  33. Wu, X. et al. Chiral BINOL-based covalent organic frameworks for enantioselective sensing. J. Am. Chem. Soc. 141, 7081–7089 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Dong, J. et al. Restriction of molecular rotors in ultrathin two-dimensional covalent organic framework nanosheets for sensing signal amplification. Chem. Mater. 31, 146–160 (2019).

    Article  CAS  Google Scholar 

  35. Han, X. et al. Chiral induction in covalent organic frameworks. Nat. Commun. 9, 1294 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chen, H., Gu, Z.-G. & Zhang, J. Chiral-induced ultrathin covalent organic frameworks nanosheets with tunable circularly polarized luminescence. J. Am. Chem. Soc. 144, 7245–7252 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Zhan, G. et al. Observing polymerization in 2D dynamic covalent polymers. Nature 603, 835–840 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Xu, H., Gao, J. & Jiang, D. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat. Chem. 7, 905–912 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, S., Zhou, J. & Li, H. Chiral covalent organic framework packed nanochannel membrane for enantioseparation. Angew. Chem. Int. Ed. 61, e202204012 (2022).

    Article  CAS  Google Scholar 

  40. Sun, B. et al. Homochiral porous nanosheets for enantiomer sieving. Nat. Mater. 17, 599–604 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Chen, T., Yang, W.-H., Wang, D. & Wan, L.-J. Globally homochiral assembly of two-dimensional molecular networks triggered by co-absorbers. Nat. Commun. 4, 1389 (2013).

    Article  PubMed  Google Scholar 

  42. Fang, Y. et al. Dynamic control over supramolecular handedness by selecting chiral induction pathways at the solution–solid interface. Nat. Chem. 8, 711–717 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Sun, B. et al. Asymmetric transformation driven by confinement and self-release in single-layered porous nanosheets. Angew. Chem. Int. Ed. 59, 22690–22696 (2020).

    Article  CAS  Google Scholar 

  44. Insua, I. & Montenegro, J. 1D to 2D self assembly of cyclic peptides. J. Am. Chem. Soc. 142, 300–307 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Long, G. et al. Chiral-perovskite optoelectronics. Nat. Rev. Mater. 5, 423–439 (2020).

    Article  Google Scholar 

  46. Yuan, C. et al. Chiral lead halide perovskite nanowires for second-order nonlinear optics. Nano Lett. 18, 5411–5417 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Wei, W.-J. et al. Regulating second-harmonic generation by van der Waals interactions in two-dimensional lead halide perovskite nanosheets. J. Am. Chem. Soc. 141, 9134–9139 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Billing, D. G. & Lemmerer, A. Synthesis and crystal structures of inorganic–organic hybrids incorporating an aromatic amine with a chiral functional group. CrystEngComm 8, 686–695 (2006).

    Article  CAS  Google Scholar 

  49. Ahn, J. et al. A new class of chiral semiconductors: chiral-organic-molecule-incorporating organic–inorganic hybrid perovskites. Mater. Horiz. 4, 851–856 (2017).

    Article  CAS  Google Scholar 

  50. Ma, J. et al. Chiral 2D perovskites with a high degree of circularly polarized photoluminescence. ACS Nano 13, 3659–3665 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Ahn, J. et al. Chiral 2D organic inorganic hybrid perovskite with circular dichroism tunable over wide wavelength range. J. Am. Chem. Soc. 142, 4206–4212 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Yang, C.-K. et al. The first 2D homochiral lead iodide perovskite ferroelectrics: [R- and S-1-(4-chlorophenyl)ethylammonium]2PbI4. Adv. Mater. 31, 1808088 (2019).

    Article  Google Scholar 

  53. Zhu, T. et al. Chain-to-layer dimensionality engineering of chiral hybrid perovskites to realize passive highly circular-polarization-sensitive photodetection. J. Am. Chem. Soc. 144, 18062–18068 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Li, D. et al. Chiral lead-free hybrid perovskites for self-powered circularly polarized light detection. Angew. Chem. Int. Ed. 60, 8415–8418 (2021).

    Article  CAS  Google Scholar 

  55. Lu, H. et al. Highly distorted chiral two-dimensional tin iodide perovskites for spin polarized charge transport. J. Am. Chem. Soc. 142, 13030–13040 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Guo, Z. et al. Giant optical activity and second harmonic generation in 2D hybrid copper halides. Angew. Chem. Int. Ed. 60, 8441–8445 (2021).

    Article  CAS  Google Scholar 

  57. Qian, Q. et al. Chiral molecular intercalation superlattices. Nature 606, 902–908 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Kim, Y.-H. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371, 1129–1133 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Zhu, C. et al. Diversity in S-layers. Prog. Biophys. Mol. Biol. 123, 1–15 (2017).

    Article  PubMed  Google Scholar 

  60. Suzuki, Y. et al. Self-assembly of coherently dynamic, auxetic, two-dimensional protein crystals. Nature 533, 369–373 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ben-Sasson, A. J. et al. Design of biologically active binary protein 2D materials. Nature 589, 468–473 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hassan, Z., Spuling, E., Knoll, D. M., Lahann, J. & Bräse, S. Planar chiral [2.2]paracyclophanes: from synthetic curiosity to applications in asymmetric synthesis and materials. Chem. Soc. Rev. 47, 6947–6963 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Jamieson, E. M. G., Modicom, F. & Goldup, S. M. Chirality in rotaxanes and catenanes. Chem. Soc. Rev. 47, 5266–5311 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Purcell-Milton, F. et al. Induction of chirality in two-dimensional nanomaterials: Chiral 2D MoS2 nanostructures. ACS Nano 12, 954–964 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Dong, J., Liu, Y. & Cui, Y. Supramolecular chirality in metal–organic complexes. Acc. Chem. Res. 54, 194–206 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Liu, M., Zhang, L. & Wang, T. Supramolecular chirality in self-assembled systems. Chem. Rev. 115, 7304–7397 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Zhang, S. et al. Quantum interference directed chiral Raman scattering in two-dimensional enantiomers. Nat. Commun. 13, 1254 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li, W. et al. High temperature ferromagnetism in π-conjugated two-dimensional metal–organic frameworks. Chem. Sci. 8, 2859–2867 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rabone, J. et al. An adaptable peptide-based porous material. Science 329, 1053–1057 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Martí-Gastaldo, C. et al. Side-chain control of porosity closure in single- and multiple-peptide-based porous materials by cooperative folding. Nat. Chem. 6, 343–351 (2014).

    Article  PubMed  Google Scholar 

  71. Xu, J. et al. Halide perovskites for nonlinear optics. Adv. Mater. 32, 1806736 (2020).

    Article  CAS  Google Scholar 

  72. Han, X., Zheng, Y., Chai, S., Chen, S. & Xu, J. 2D organic-inorganic hybrid perovskite materials for nonlinear optics. Nanophotonics 9, 1787–1810 (2020).

    Article  CAS  Google Scholar 

  73. Wu, Z. & Zheng, Y. Moiré chiral metamaterials. Adv. Opt. Mater. 5, 1700034 (2017).

    Article  Google Scholar 

  74. Bailey, J. B. & Tezcan, F. A. Tunable and cooperative thermomechanical properties of protein–metal–organic frameworks. J. Am. Chem. Soc. 142, 17265–17270 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Science Foundation of China (grants 22271184, 22331007 and 22225111), the National Key Basic Research Programme of China (2021YFA1200402, 2021YFA1501501, 2022YFA1503302 and 2021YFA1200302), the Key Project of Basic Research of Shanghai (22JC1402000 and 21JC1401700) and the Shenzhen Science and Technology Programme (CJGJZD20210408091800002).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception, discussion and writing of the manuscript.

Corresponding author

Correspondence to Yong Cui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Minghua Lie and Xian-He Bu for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., Liu, Y. & Cui, Y. Emerging chiral two-dimensional materials. Nat. Chem. 16, 1398–1407 (2024). https://doi.org/10.1038/s41557-024-01595-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-024-01595-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing