Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enantiospecific cross-coupling of cyclic alkyl sulfones

Abstract

Methods to form carbon–carbon bonds efficiently and with control of stereochemistry are critical for the construction of complex molecules. Cross-coupling reactions are among the most efficient and widely used reactions to construct molecules, with reactions enabling the retention or installation of chirality as recent additions to this powerful toolbox. Sulfones are robust, accessible organic electrophiles that have many attractive features as cross-coupling partners; however, since the first example of their use in 1979, there have been no examples of their use in enantioselective, enantiospecific or entantioconvergent cross-couplings. The high acidity of sulfones makes it unclear whether this transformation is even possible outside tertiary systems. Here we report the enantiospecific cross-coupling of cyclic sulfones and Grignard reagents. Up to 99% chirality transfer is observed despite the strong basicity of the Grignard components. In situ monitoring reveals that the cross-coupling is kinetically competitive with competing deprotonation, resulting in a highly enantioselective transformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Desulfonylative cross-coupling reactions.
Fig. 2: Enantiospecific Ni-catalysed cross-coupling.
Fig. 3: Mechanistic investigations.

Similar content being viewed by others

Data availability

Crystal structure data for (S)-1a, [NiBr2(DMPMA)]2 and (R)-17 have been deposited at the Cambridge Crystallographic Data Centre (CCDC 2298851-2298853), and crystallographic data are provided in Supplementary Information. Additionally, the spectroscopic, mass spectrometric, chromatographic and kinetic data that support the findings of this study are also available in Supplementary Information.

References

  1. Roughley, S. D. & Jordan, A. M. The medicinal chemist’s toolbox: an analysis of reactions used in the pursuit of drug candidates. J. Med. Chem. 54, 3451–3479 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Nambo, M. & Crudden, C. M. Transition metal-catalyzed cross-couplings of benzylic sulfone derivatives. Chem. Rec. 21, 3978–3989 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Chatelain, P., Sau, A., Rowley, C. N. & Moran, J. Suzuki–Miyaura coupling of (hetero)aryl sulfones: complementary reactivity enables iterative polyaryl synthesis. Angew. Chem. Int. Ed. 58, 14959–14963 (2019).

    Article  CAS  Google Scholar 

  4. Fukuda, J. I., Nogi, K. & Yorimitsu, H. Cross-coupling of aryl trifluoromethyl sulfones with arylboronates by cooperative palladium/rhodium catalysis. Org. Lett. 21, 8987–8991 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Gong, L. et al. Ni-catalyzed suzuki-miyaura cross-coupling of α-oxo-vinylsulfones to prepare C-aryl glycals and acyclic vinyl ethers. J. Am. Chem. Soc. 141, 7680–7686 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Merchant, R. R. et al. Modular radical cross-coupling with sulfones enables access to sp3-rich (fluoro)alkylated scaffolds. Science 360, 75–80 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Miao, W. et al. Nickel-catalyzed reductive 2-pyridination of aryl iodides with difluoromethyl 2-pyridyl sulfone. Org. Lett. 23, 711–715 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Wang, Q. et al. Visible light activation enables desulfonylative cross-coupling of glycosyl sulfones. Nat. Synth. 1, 967–974 (2022).

    Article  Google Scholar 

  9. Nambo, M. & Crudden, C. M. Modular synthesis of triarylmethanes through palladium-catalyzed sequential arylation of methyl phenyl sulfone. Angew. Chem. Int. Ed. 53, 742–746 (2014).

    Article  CAS  Google Scholar 

  10. Nambo, M., Keske, E. C., Rygus, J. P. G., Yim, J. C. H. & Crudden, C. M. Development of versatile sulfone electrophiles for Suzuki–Miyaura cross-coupling reactions. ACS Catal. 7, 1108–1112 (2017).

    Article  CAS  Google Scholar 

  11. Yim, J. C. H., Nambo, M. & Crudden, C. M. Pd-catalyzed desulfonative cross-coupling of benzylic sulfone derivatives with 1,3-oxazoles. Org. Lett. 19, 3715–3718 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Nambo, M., Tahara, Y., Yim, J. C. H. & Crudden, C. M. Cu-catalyzed desulfonylative amination of benzhydryl sulfones. Chem. A 25, 1923–1926 (2019).

    CAS  Google Scholar 

  13. Ariki, Z. T., Maekawa, Y., Nambo, M. & Crudden, C. M. Preparation of quaternary centers via nickel-catalyzed Suzuki–Miyaura cross-coupling of tertiary sulfones. J. Am. Chem. Soc. 140, 78–81 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Minghao, F., Bingqing, T., Steven, H. L. & Xuefeng, J. Sulfur containing scaffolds in drugs: synthesis and application in medicinal chemistry. Curr. Top. Med. Chem. 16, 1200–1216 (2016).

    Article  Google Scholar 

  15. Devendar, P. & Yang, G.-F. Sulfur-containing agrochemicals. Top. Curr. Chem. 8, 35–78 (2017).

    Google Scholar 

  16. Kultys, A. Sulfur-containing polymers. In Encyclopedia of Polymer Science and Technology (2010).

  17. Liu, M. et al. Blue thermally activated delayed fluorescence materials based on bis(phenylsulfonyl)benzene derivatives. Chem. Commun. 51, 16353–16356 (2015).

    Article  CAS  Google Scholar 

  18. Zhang, Q. et al. Design of efficient thermally activated delayed fluorescence materials for pure blue organic light emitting diodes. J. Am. Chem. Soc. 134, 14706–14709 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Aziz, J., Messaoudi, S., Alami, M. & Hamze, A. Sulfinate derivatives: dual and versatile partners in organic synthesis. Org. Biomol. Chem. 12, 9743–9759 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. De Luca, L. & Giacomelli, G. An easy microwave-assisted synthesis of sulfonamides directly from sulfonic acids. J. Org. Chem. 73, 3967–3969 (2008).

    Article  PubMed  Google Scholar 

  21. Fier, P. S. & Maloney, K. M. NHC-catalyzed deamination of primary sulfonamides: a platform for late-stage functionalization. J. Am. Chem. Soc. 141, 1441–1445 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Woolven, H., González-Rodríguez, C., Marco, I., Thompson, A. L. & Willis, M. C. DABCO-bis(sulfur dioxide), DABSO, as a convenient source of sulfur dioxide for organic synthesis: utility in sulfonamide and sulfamide preparation. Org. Lett. 13, 4876–4878 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Eno, M., Lu, A. & Morken, J. Nickel-catalyzed asymmetric Kumada cross-coupling of symmetric cyclic sulfates. J. Am. Chem. Soc. 138, 7824–7827 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tobisu, M. & Chatani, N. Cross-couplings using aryl ethers via C–O bond activation enabled by nickel catalysts. Acc. Chem. Res. 48, 1717–1726 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Tollefson, E. J., Dawson, D. D., Osborne, C. A. & Jarvo, E. R. Stereospecific cross-coupling reactions of aryl-substituted tetrahydrofurans, tetrahydropyrans and lactones. J. Am. Chem. Soc. 136, 14951–14958 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu, J., Bercher, O. P. & Watson, M. P. Overcoming the naphthyl requirement in stereospecific cross-couplings to form quaternary stereocenters. J. Am. Chem. Soc. 143, 8608–8613 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Taylor, B. L. H., Swift, E. C., Waetzig, J. D. & Jarvo, E. R. Stereospecific nickel-catalyzed cross-coupling reactions of alkyl ethers: enantioselective synthesis of diarylethanes. J. Am. Chem. Soc. 133, 389–391 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Basch, C. H., Cobb, K. M. & Watson, M. P. Nickel-catalyzed borylation of benzylic ammonium salts: stereospecific synthesis of enantioenriched benzylic boronates. Org. Lett. 18, 136–139 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Periasamy, M., Gurubrahamam, R. & Muthukumaragopal, G. P. Methods for the synthesis of chiral sulfur heterocycles and their application in the asymmetric Baylis–Hillman reactions. Tetrahedron Asymmetry 24, 568–574 (2013).

    Article  CAS  Google Scholar 

  30. Tokunaga, N. & Hayashi, T. Highly enantioselective 1,4-addition of arylzinc reagents to 3-arylpropenals catalyzed by a rhodium–binap complex in the presence of chlorotrimethylsilane. Tetrahedron Asymmetry 17, 607–613 (2006).

    Article  CAS  Google Scholar 

  31. Zeynizadeh, B. & Behyar, T. Wet THF as a suitable solvent for a mild and convenient reduction of carbonyl compounds with NaBH4. Bull. Chem. Soc. Jpn 78, 307–315 (2005).

    Article  CAS  Google Scholar 

  32. Baughman, T. W., Sworen, J. C. & Wagener, K. B. The facile preparation of alkenyl metathesis synthons. Tetrahedron 60, 10943–10948 (2004).

    Article  CAS  Google Scholar 

  33. Chou, T., Tso, H. & Chang, L. Stereoselective one-step syntheses of trans-β-ocimene and α-farnesene. J. Chem. Soc., Chem. Commun. 1323–1324 (1984).

  34. Cahn, R. S., Ingold, C. & Prelog, V. Specification of molecular chirality. Angew. Chemie Int. Ed. Engl. 5, 385–415 (1966).

    Article  CAS  Google Scholar 

  35. Netherton, M. R. & Fu, G. C. Suzuki cross-couplings of alkyl tosylates that possess β hydrogen atoms: synthetic and mechanistic studies. Angew. Chem. Int. Ed. 41, 3910–3912 (2002).

    Article  CAS  Google Scholar 

  36. Li, M. B., Tang, X. L. & Tian, S. K. Cross-coupling of Grignard reagents with sulfonyl-activated sp3 carbon–nitrogen bonds. Adv. Synth. Catal. 353, 1980–1984 (2011).

    Article  CAS  Google Scholar 

  37. Jin, M., Adak, L. & Nakamura, M. Iron-catalyzed enantioselective cross-coupling reactions of α-chloroesters with aryl Grignard reagents. J. Am. Chem. Soc. 137, 7128–7134 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Nambo, M., Maekawa, Y. & Crudden, C. M. Desulfonylative transformations of sulfones by transition-metal catalysis, photocatalysis, and organocatalysis. ACS Catal. 12, 3013–3032 (2022).

    Article  CAS  Google Scholar 

  39. Yoshikai, N., Matsuda, H. & Nakamura, E. Ligand exchange as the first irreversible step in the nickel-catalyzed cross-coupling reaction of Grignard reagents. J. Am. Chem. Soc. 130, 15258–15259 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Zhou, Q., Cobb, K. M., Tan, T. & Watson, M. P. Stereospecific cross couplings to set benzylic, all-carbon quaternary stereocenters in high enantiopurity. J. Am. Chem. Soc. 138, 12057–12060 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Terao, J., Watanabe, H., Ikumi, A., Kuniyasu, H. & Kambe, N. Nickel-catalyzed cross-coupling reaction of Grignard reagents with alkyl halides and tosylates: remarkable effect of 1,3-butadienes. J. Am. Chem. Soc. 124, 4222–4223 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Borys, A. M. & Hevia, E. The anionic pathway in the nickel-catalysed cross-coupling of aryl ethers. Angew. Chem. Int. Ed. 60, 24659–24667 (2021).

    Article  CAS  Google Scholar 

  43. Murray, B., Zhao, S., Aramini, J. M., Wang, H. & Biscoe, M. R. The stereochemical course of Pd-catalyzed Suzuki reactions using primary alkyltrifluoroborate nucleophiles. ACS Catal. 11, 2504–2510 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tollefson, E. J., Hanna, L. E. & Jarvo, E. R. Stereospecific nickel-catalyzed cross-coupling reactions of benzylic ethers and esters. Acc. Chem. Res. 48, 2344–2353 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tollefson, E. J., Dawson, D. D., Osborne, C. A. & Jarvo, E. R. Stereospecific cross-coupling reactions of aryl-substituted tetrahydrofurans, tetrahydropyrans, and lactones. J. Am. Chem. Soc. 136, 14951–14958 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen, P. P. et al. A unified explanation for chemoselectivity and stereospecificity of Ni-catalyzed Kumada and cross-electrophile coupling reactions of benzylic ethers: a combined computational and experimental study. J. Am. Chem. Soc. 141, 5835–5855 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grants-in-Aid for Scientific Research (KAKENHI) from the Japan Society for the Promotion of Science (JSPS) (17K17805 and 21K05068 to M.N.). S.S. thanks the Baden-Württemberg-Stiftung for funding. J.A. and S.S. also thank the support of the Stuttgart-Queen’s Dual MSc Degree Program. C.M.C. and R.N.-S. acknowledge the Natural Science and Engineering Research Council of Canada (NSERC) and the Canada Foundation for Innovation (CFI) for funding. Z.T.A. thanks Queen’s University for funding. JSPS and Nagoya University are acknowledged for funding of this research through The World Premier International Research Initiative (WPI) program. The authors also wish to thank F. Sauriol (NMR), K. McEleney (high resolution mass spectrometry), G. Schatte (XRD), J. Wang (high resolution mass spectrometry) and A. D. Erlich (reaction monitoring assistance).

Author information

Authors and Affiliations

Authors

Contributions

M.N. and C.M.C. conceived the concept and supervised the project. R.N.-S., Z.T.A., S.S. and J.A. developed the methodology, optimized cross-coupling conditions and examined the scope of the reaction. Y.T. separated enantiomers of racemic substrates. R.N.-S. developed strategies that enabled the study of the catalytic mechanism (NMR and e.e. monitoring). R.N.-S. and Z.T.A grew samples for XRD. D.Y. and M.N. carried out DFT calculations. R.N.-S., Z.T.A, M.N. and C.M.C. wrote the manuscript with assistance from the co-authors.

Corresponding authors

Correspondence to Masakazu Nambo or Cathleen M. Crudden.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Nicholas Ball and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Figs. 1–146, Tables 1–6 and references.

Supplementary Data 1

Optimized Cartesian coordinates (CAM-B3LYP) for the calculated structures for (S)-1a, 18, 19-anti, 19-syn, 20, 21, TS_inversion and TS_retention.

Supplementary Data 2

Crystallographic data for compound (S)-1a, CCDC reference 2298851.

Supplementary Data 3

Crystallographic data for compound [NiBr2(DMPMA)]2, CCDC reference 2298852.

Supplementary Data 4

Crystallographic data for compound (R)-17, CCDC reference 2298853.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nolla-Saltiel, R., Ariki, Z.T., Schiele, S. et al. Enantiospecific cross-coupling of cyclic alkyl sulfones. Nat. Chem. 16, 1445–1452 (2024). https://doi.org/10.1038/s41557-024-01594-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-024-01594-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing