Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular-docking electrolytes enable high-voltage lithium battery chemistries

Abstract

Ideal rechargeable lithium battery electrolytes should promote the Faradaic reaction near the electrode surface while mitigating undesired side reactions. Yet, conventional electrolytes usually show sluggish kinetics and severe degradation due to their high desolvation energy and poor compatibility. Here we propose an electrolyte design strategy that overcomes the limitations associated with Li salt dissociation in non-coordinating solvents to enable fast, stable Li chemistries. The non-coordinating solvents are activated through favourable hydrogen bond interactions, specifically Fδ−–Hδ+ or Hδ+–Oδ−, when blended with fluorinated benzenes or halide alkane compounds. These intermolecular interactions enable a dynamic Li+–solvent coordination process, thereby promoting the fast Li+ reaction kinetics and suppressing electrode side reactions. Utilizing this molecular-docking electrolyte design strategy, we have developed 25 electrolytes that demonstrate high Li plating/stripping Coulombic efficiencies and promising capacity retentions in both full cells and pouch cells. This work supports the use of the molecular-docking solvation mechanism for designing electrolytes with fast Li+ kinetics for high-voltage Li batteries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of dominant and recessive solvation.
Fig. 2: Recessive solvent and inducer simulations.
Fig. 3: Characterization of the MDEs.
Fig. 4: Fast Li+ transfer kinetics enabled by dynamic Li+–solvent coordination.
Fig. 5: Analysis of LMA and cycling performance in different electrolytes.
Fig. 6: Design principle and overall evaluation of MDEs.

Similar content being viewed by others

Data availability

We declare that the data supporting the findings of this study are available within the article and its Supplementary Information. Source data are provided with this paper.

References

  1. Meng, Y. S., Srinivasan, V. & Xu, K. Designing better electrolytes. Science 378, eabq3750 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. Wang, H. et al. Liquid electrolyte: the nexus of practical lithium metal batteries. Joule 6, 588–616 (2022).

    Article  CAS  Google Scholar 

  3. Fan, X. & Wang, C. High-voltage liquid electrolytes for Li batteries: progress and perspectives. Chem. Soc. Rev. 50, 10486–10566 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Placke, T., Kloepsch, R., Dühnen, S. & Winter, M. Lithium ion, lithium metal and alternative rechargeable battery technologies: the odyssey for high energy density. J. Solid State Electr. 21, 1939–1964 (2017).

    Article  CAS  Google Scholar 

  6. Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Li, M., Wang, C., Chen, Z., Xu, K. & Lu, J. New concepts in electrolytes. Chem. Rev. 120, 6783–6819 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Fan, X. et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy 4, 882–890 (2019).

    Article  CAS  Google Scholar 

  9. Cheng, H. et al. Emerging era of electrolyte solvation structure and interfacial model in batteries. ACS Energy Lett. 7, 490–513 (2022).

    Article  CAS  Google Scholar 

  10. Chen, X. & Zhang, Q. Atomic insights into the fundamental interactions in lithium battery electrolytes. Acc. Chem. Res. 53, 1992–2002 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Xu, K. & Cresce, A. V. W. Li+-solvation/desolvation dictates interphasial processes on graphitic anode in Li ion cells. J. Mater. Res. 27, 2327–2341 (2012).

    Article  CAS  Google Scholar 

  12. Zhang, S. S. Design aspects of electrolytes for fast charge of Li‐ion batteries. InfoMat 3, 125–130 (2020).

    Article  Google Scholar 

  13. Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).

    Article  CAS  Google Scholar 

  14. Suo, L. et al. ‘Water-in-salt’ electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Peng, Z. et al. High‐power lithium metal batteries enabled by high‐concentration acetonitrile‐based electrolytes with vinylene carbonate additive. Adv. Funct. Mater. 30, 2001285 (2020).

    Article  CAS  Google Scholar 

  17. Dokko, K. et al. Solvate ionic liquid electrolyte for Li–S batteries. J. Electrochem. Soc. 160, A1304 (2013).

    Article  CAS  Google Scholar 

  18. Chen, S. et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 30, 1706102 (2018).

    Article  Google Scholar 

  19. Cao, X., Jia, H., Xu, W. & Zhang, J.-G. Localized high-concentration electrolytes for lithium batteries. J. Electrochem. Soc. 168, 010522 (2021).

    Article  CAS  Google Scholar 

  20. Zhao, Y. et al. Electrolyte engineering for highly inorganic solid electrolyte interphase in high-performance lithium metal batteries. Chem 9, 682–697 (2023).

    Article  CAS  Google Scholar 

  21. Jiao, S. et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 3, 739–746 (2018).

    Article  CAS  Google Scholar 

  22. Ren, X. et al. Enabling high-voltage lithium-metal batteries under practical conditions. Joule 3, 1662–1676 (2019).

    Article  CAS  Google Scholar 

  23. Jiang, Z. et al. Fluorobenzene, a low-density, economical and bifunctional hydrocarbon cosolvent for practical lithium metal batteries. Adv. Funct. Mater. 31, 2005991 (2020).

    Article  Google Scholar 

  24. Fan, X. et al. Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4, 174–185 (2018).

    Article  CAS  Google Scholar 

  25. Piao, N. et al. Countersolvent electrolytes for lithium‐metal batteries. Adv. Energy Mater. 10, 1903568 (2020).

    Article  CAS  Google Scholar 

  26. Wang, Z. et al. Highly concentrated dual-anion electrolyte for non-flammable high-voltage Li-metal batteries. Energy Storage Mater. 30, 228–237 (2020).

    Article  Google Scholar 

  27. Yu, Z. et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7, 94–106 (2022).

    Article  CAS  Google Scholar 

  28. Zhao, Y. et al. Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries. Nat. Commun. 13, 2575 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhao, Y., Zhou, T., Mensi, M., Choi, J. W. & Coskun, A. Electrolyte engineering via ether solvent fluorination for developing stable non-aqueous lithium metal batteries. Nat. Commun. 14, 299 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, Y. et al. Emerging electrolytes with fluorinated solvents for rechargeable lithium-based batteries. Chem. Soc. Rev. 52, 2713–2763 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Li, Z. et al. Non-polar ether-based electrolyte solutions for stable high-voltage non-aqueous lithium metal batteries. Nat. Commun. 14, 868 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chen, Y. et al. Steric effect tuned ion solvation enabling stable cycling of high-voltage lithium metal battery. J. Am. Chem. Soc. 143, 18703–18713 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Chen, X., Zhang, X.-Q., Li, H.-R. & Zhang, Q. Cation-solvent, cation-anion and solvent–solvent interactions with electrolyte solvation in lithium batteries. Batteries Supercaps 2, 128–131 (2019).

    Article  CAS  Google Scholar 

  34. Yao, Y. X. et al. Regulating interfacial chemistry in lithium‐ion batteries by a weakly solvating electrolyte. Angew. Chem. Int. Ed. 60, 4090–4097 (2020).

    Article  Google Scholar 

  35. Lee, H. S., Yang, X. Q., McBreen, J., Okamoto, Y. & Choi, L. S. A new family of anion receptors and their effect on ion pair dissociation and conductivity of lithium salts in non-aqueous solutions. Electrochim. Acta 40, 2353–2356 (1995).

    Article  CAS  Google Scholar 

  36. Lee, H. S., Yang, X. Q., Xiang, C. L., McBreen, J. & Choi, L. S. The synthesis of a new family of boron‐based anion receptors and the study of their effect on ion pair dissociation and conductivity of lithium salts in nonaqueous solutions. J. Electrochem. Soc. 145, 2813 (1998).

    Article  CAS  Google Scholar 

  37. Li, L. F. et al. New electrolytes for lithium ion batteries using LiF salt and boron based anion receptors. J. Power Sources 184, 517–521 (2008).

    Article  CAS  Google Scholar 

  38. Li, L. F., Lee, H. S., Li, H., Yang, X. Q. & Huang, X. J. A pentafluorophenylboron oxalate additive in non-aqueous electrolytes for lithium batteries. Electrochem. Commun. 11, 2296–2299 (2009).

    Article  CAS  Google Scholar 

  39. Sun, X., Lee, H. S., Yang, X. Q. & McBreen, J. Comparative studies of the electrochemical and thermal stability of two types of composite lithium battery electrolytes using boron‐based anion receptors. J. Electrochem. Soc. 146, 3655 (1999).

    Article  CAS  Google Scholar 

  40. Chen, Z. & Amine, K. Bifunctional electrolyte additive for lithium-ion batteries. Electrochem. Commun. 9, 703–707 (2007).

    Article  Google Scholar 

  41. Xie, B. et al. New electrolytes using Li2O or Li2O2 oxides and tris(pentafluorophenyl) borane as boron based anion receptor for lithium batteries. Electrochem. Commun. 10, 1195–1197 (2008).

    Article  CAS  Google Scholar 

  42. Wu, H. et al. Development of LiNi0.5Mn1.5O4/Li4Ti5O12 system with long cycle life. J. Electrochem. Soc. 156, A1047–A1050 (2009).

    Article  CAS  Google Scholar 

  43. Qin, Y., Chen, Z., Lee, H. S., Yang, X. Q. & Amine, K. Effect of anion receptor additives on electrochemical performance of lithium-ion batteries. J. Phys. Chem. C 114, 15202–15206 (2010).

    Article  CAS  Google Scholar 

  44. Weber, R. et al. Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat. Energy 4, 683–689 (2019).

    Article  CAS  Google Scholar 

  45. Louli, A. J. et al. Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nat. Energy 5, 693–702 (2020).

    Article  CAS  Google Scholar 

  46. Zhang, Q.-K. et al. Homogeneous and mechanically stable solid–electrolyte interphase enabled by trioxane-modulated electrolytes for lithium metal batteries. Nat. Energy 8, 725–735 (2023).

    Article  CAS  Google Scholar 

  47. Lee, H. S. et al. Synthesis of cyclic aza‐ether compounds and studies of their use as anion receptors in nonaqueous lithium halide salts solution. J. Electrochem. Soc. 147, 9 (2000).

    Article  CAS  Google Scholar 

  48. Qiao, B. et al. Supramolecular regulation of anions enhances conductivity and transference number of lithium in liquid electrolytes. J. Am. Chem. Soc. 140, 10932–10936 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Huang, K. et al. Regulation of SEI formation by anion receptors to achieve ultra-stable lithium-metal batteries. Angew. Chem. Int. Ed. 60, 19232–19240 (2021).

    Article  CAS  Google Scholar 

  50. Xu, K., von Cresce, A. & Lee, U. Differentiating contributions to ‘ion transfer’ barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface. Langmuir 26, 11538–11543 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Holoubek, J. et al. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy 6, 303–313 (2021).

    Article  CAS  Google Scholar 

  52. Yang, Y. et al. Synergy of weakly‐solvated electrolyte and optimized interphase enables graphite anode charge at low temperature. Angew. Chem. Int. Ed. 61, e202208345 (2022).

    Article  CAS  Google Scholar 

  53. Shafiei Sabet, P. & Sauer, D. U. Separation of predominant processes in electrochemical impedance spectra of lithium-ion batteries with nickel–manganese–cobalt cathodes. J. Power Sources 425, 121–129 (2019).

    Article  CAS  Google Scholar 

  54. Lu, Y., Zhao, C.-Z., Huang, J.-Q. & Zhang, Q. The timescale identification decoupling complicated kinetic processes in lithium batteries. Joule 6, 1172–1198 (2022).

    Article  CAS  Google Scholar 

  55. Aurbach, D., Gofer, Y. & Langzam, J. The correlation between surface chemistry, surface morphology and cycling efficiency of lithium electrodes in a few polar aprotic systems. J. Electrochem. Soc. 136, 3198 (1989).

    Article  CAS  Google Scholar 

  56. Adams, B. D., Zheng, J., Ren, X., Xu, W. & Zhang, J. G. Accurate determination of Coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8, 1702097 (2017).

    Article  Google Scholar 

  57. Efaw, C. M. et al. Localized high-concentration electrolytes get more localized through micelle-like structures. Nat. Mater. 22, 1531–1539 (2023).

    Article  CAS  PubMed  Google Scholar 

  58. Zhu, C. et al. Anion–diluent pairing for stable high-energy Li metal batteries. ACS Energy Lett. 7, 1338–1347 (2022).

    Article  CAS  Google Scholar 

  59. Zhang, J. et al. Multifunctional solvent molecule design enables high-voltage Li-ion batteries. Nat. Commun. 14, 2211 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang, H. et al. Simultaneous stabilization of lithium anode and cathode using hyperconjugative electrolytes for high-voltage lithium metal batteries. Angew. Chem. Int. Edit. 62, e202218970 (2023).

    Article  CAS  Google Scholar 

  61. Huang, Y. et al. Eco-friendly electrolytes via robust bond design for high-energy Li-metal batteries. Energy Environ. Sci. 15, 4349–4361 (2022).

    Article  CAS  Google Scholar 

  62. Xue, W. et al. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nat. Energy 6, 495–505 (2021).

    Article  CAS  Google Scholar 

  63. Suo, L. et al. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proc. Natl Acad. Sci. USA 115, 1156–1161 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang, W. et al. Engineering a passivating electric double layer for high performance lithium metal batteries. Nat. Commun. 13, 2029 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li, X. et al. Understanding steric hindrance effect of solvent molecule in localized high-concentration electrolyte for lithium metal batteries. Carbon Neutrality 2, 34 (2023).

    Article  Google Scholar 

  66. Frisch, M. J. et al. Gaussian 09, Revision A.02 (Gaussian Inc., 2009).

  67. Johnson, E. R. et al. Revealing noncovalent interactions. J. Am. Chem. Soc. 132, 6498 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lu, T. & Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article  PubMed  Google Scholar 

  69. Manzetti, S. & Lu, T. The geometry and electronic structure of Aristolochic acid: possible implications for a frozen resonance. J. Phys. Org. Chem. 26, 473–483 (2013).

    Article  CAS  Google Scholar 

  70. Lu, T. & Manzetti, S. Wavefunction and reactivity study of benzo[a]pyrene diol epoxide and its enantiomeric forms. J. Struct. Chem. 25, 1521–1533 (2014).

    Article  CAS  Google Scholar 

  71. Lu, T. Molclus, v.1.9.9.9 http://www.keinsci.com/research/molclus.html (accessed on 5 July 2022).

  72. Sun, C. et al. 50C fast-charge Li-ion batteries using graphite anode. Adv. Mater. 34, 2206020 (2022).

    Article  CAS  Google Scholar 

  73. Xing, L., Borodin, O., Smith, G. D. & Li, W. Density functional theory study of the role of anions on the oxidative decomposition reaction of propylene carbonate. J. Phys. Chem. A 115, 13896–13905 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Borodin, O., Behl, W. & Jow, T. R. Oxidative stability and initial decomposition reactions of carbonate, sulfone and alkyl phosphate-based electrolytes. J. Phys. Chem. C 117, 8661–8682 (2013).

    Article  CAS  Google Scholar 

  75. Shimizu, K., Almantariotis, D. & Gomes, M. Molecular force field for ionic liquids V: hydroxyethylimidazolium, dimethoxy-2-methylimidazolium, and fluoroalkylimidazolium cations and bis(fluorosulfonyl)amide, perfluoroalkanesulfonylamide, and fluoroalkylfluorophosphate anions. J. Phys. Chem. B 114, 3592–3600 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Doherty, B., Zhong, X., Gathiaka, S., Li, B. & Acevedo, O. Revisiting OPLS force field parameters for ionic liquid simulations. J. Chem. Theory Comput. 13, 6131–6145 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Gerlitz, A. I. et al. Polypropylene carbonate-based electrolytes as model for a different approach towards improved ion transport properties for novel electrolytes. Phys. Chem. Chem. Phys. 25, 4810–4823 (2023).

    Article  CAS  PubMed  Google Scholar 

  78. Humphrey, W., Dalke, A. & Schulten, K. K. VMD: Visual Molecular Dynamics. J. Mol. Graph Model 14, 33–38 (1995).

    Article  Google Scholar 

  79. Brehm, M. & Kirchner, B. TRAVIS—a free analyzer and visualizer for Monte Carlo and molecular dynamics trajectories. J. Chem. Inf. Model. 51, 2007–2023 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Brehm, M., Thomas, M., Gehrke, S. & Kirchner, B. TRAVIS—a free analyzer for trajectories from molecular simulation. J. Chem. Phys. 152, 164105 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  82. Kresse, G. & Hafner, J. Ab initio molecular dynamics of liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  83. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  CAS  Google Scholar 

  84. Leung, K. & Tenney, C. M. Toward first principles prediction of voltage dependences of electrolyte/electrolyte interfacial processes in lithium ion batteries. J. Phys. Chem. C 117, 24224–24235 (2013).

    Article  CAS  Google Scholar 

  85. Wang, V., Xu, N., Liu, J.-C., Tang, G. & Geng, W.-T. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22072134, 22161142017 and U21A2081 to X.F.), the Natural Science Foundation of Zhejiang Province (LZ21B030002 and LR23B030002 to X.F.), the Fundamental Research Funds for the Central Universities (2021FZZX001-09 and 226-2024-00075 to X.F.) and the Hundred Talents Program of Zhejiang University (X.F.).

Author information

Authors and Affiliations

Authors

Contributions

B.M., H.Z. and X.F. conceived the idea and designed the experiments. B.M., H.Z., S.Z., Long Chen, T.Z. and J.W. conducted the electrochemical experiments and analysis. H.Z. and R.L. conducted the theoretical simulations. R.Z. and S.D. performed the configurational preference calculations. B.M. and H.Z. wrote the draft paper. X.X., T.D., Lixin Chen and X.F. edited and polished the paper. X.F. supervised the project. All authors contributed to the interpretation of the results.

Corresponding author

Correspondence to Xiulin Fan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Javier Carrasco and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–100, Tables 1–6, Notes 1–12 and references.

Supplementary Video 1

Supplementary Video 1.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, B., Zhang, H., Li, R. et al. Molecular-docking electrolytes enable high-voltage lithium battery chemistries. Nat. Chem. 16, 1427–1435 (2024). https://doi.org/10.1038/s41557-024-01585-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-024-01585-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing