Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Establishing the origin of Marcus-inverted-region behaviour in the excited-state dynamics of cobalt(III) polypyridyl complexes

A Publisher Correction to this article was published on 13 August 2024

This article has been updated

Abstract

Growing interest in the use of first-row transition metal complexes in a number of applied contexts—including but not limited to photoredox catalysis and solar energy conversion—underscores the need for a detailed understanding of their photophysical properties. A recent focus on ligand-field photocatalysis using cobalt(III) polypyridyls in particular has unlocked unprecedented excited-state reactivities. Photophysical studies on Co(III) chromophores in general are relatively uncommon, and so here we carry out a systematic study of a series of Co(III) polypyridyl complexes in order to delineate their excited-state dynamics. Compounds with varying ligand-field strengths were prepared and studied using variable-temperature ultrafast transient absorption spectroscopy. Analysis of the data establishes that the ground-state recovery dynamics are operating in the Marcus inverted region, in stark contrast to what is typically observed in other first-row metal complexes. The analysis has further revealed the underlying reasons driving this excited-state behaviour, thereby enabling potential advancements in the targeted use of the Marcus inverted region for a variety of photolytic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure, ground-state and excited-state properties.
Fig. 2: Schematic representation of the energy gap law and Marcus theory.
Fig. 3: Variable-temperature transient absorption studies.
Fig. 4: Origin of Marcus inverted region in Co(III).
Fig. 5: Proposed model.

Similar content being viewed by others

Data availability

All the data that support the findings of this study are provided via Figshare at https://doi.org/10.6084/m9.figshare.25803085 (ref. 64). Source data are provided with this paper.

Change history

References

  1. Juris, A. et al. Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence. Coord. Chem. Rev. 84, 85–277 (1988).

    Article  CAS  Google Scholar 

  2. Dixon, I. M. et al. A family of luminescent coordination compounds: iridium(III) polyimine complexes. Chem. Soc. Rev. 29, 385–391 (2000).

    Article  CAS  Google Scholar 

  3. Lytle, F. E. & Hercules, D. M. Luminescence of tris (2,2′-bipyridine) ruthenium(II) dichloride. J. Am. Chem. Soc. 646, 253–257 (1968).

    Google Scholar 

  4. Arias-Rotondo, D. M. & McCusker, J. K. The photophysics of photoredox catalysis: a roadmap for catalyst design. Chem. Soc. Rev. 45, 5803–5820 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. de Groot, L. H. M., Ilic, A., Schwarz, J. & Wärnmark, K. Iron photoredox catalysis–past, present, and future. J. Am. Chem. Soc. 145, 9369–9388 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).

    Article  CAS  Google Scholar 

  7. McCusker, J. K. Electronic structure in the transition metal block and its implications for light harvesting. Science 363, 484–488 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Wegeberg, C. & Wenger, O. S. Luminescent first-row transition metal complexes. JACS Au 1, 1860–1876 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beaudelot, J. et al. Photoactive copper complexes: properties and applications. Chem. Rev. 122, 16365–16609 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Sinha, N., Wegeberg, C., Häussinger, D., Prescimone, A. & Wenger, O. S. Photoredox-active Cr(0) luminophores featuring photophysical properties competitive with Ru(II) and Os(II) complexes. Nat. Chem. 15, 1730–1736 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Herr, P., Kerzig, C., Larsen, C. B., Häussinger, D. & Wenger, O. S. Manganese(I) complexes with metal-to-ligand charge transfer luminescence and photoreactivity. Nat. Chem. 13, 956–962 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Smeigh, A. L., Creelman, M., Mathies, R. A. & McCusker, J. K. Femtosecond time-resolved optical and Raman spectroscopy of photoinduced spin crossover: temporal resolution of low-to-high spin optical switching. J. Am. Chem. Soc. 130, 14105–14107 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. McCusker, J. K. et al. Subpicosecond 1MLCT→5T2 intersystem crossing of low-spin polypyridyl ferrous complexes. J. Am. Chem. Soc. 115, 298–307 (1993).

    Article  CAS  Google Scholar 

  14. McCusker, J. K., Rheingold, A. L. & Hendrickson, D. N. Variable-temperature studies of laser-initiated 5T2 → 1A1 intersystem crossing in spin-crossover complexes: empirical correlations between activation parameters and ligand structure in a series of polypyridyl ferrous complexes. Inorg. Chem. 35, 2100–2112 (1996).

    Article  CAS  Google Scholar 

  15. Monat, J. E. & McCusker, J. K. Femtosecond excited-state dynamics of an iron(II) polypyridyl solar cell sensitizer model. J. Am. Chem. Soc. 122, 4092–4097 (2000).

    Article  CAS  Google Scholar 

  16. Bressler, C. et al. Femtosecond XANES study of the light-induced spin crossover dynamics in an iron(II) complex. Science 323, 489–492 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, K., Ash, R., Girolami, G. S. & Vura-Weis, J. Tracking the metal-centered triplet in photoinduced spin crossover of [Fe(phen)3]2+ with tabletop femtosecond M-edge X-ray absorption near-edge structure spectroscopy. J. Am. Chem. Soc. 141, 17180–17188 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Kitzmann, W. R. & Heinze, K. Charge-transfer and spin-flip states: Thriving as complements. Angew. Chem. Int. Ed. 62, 1–17 (2023).

    Article  Google Scholar 

  19. Dorn, M. et al. in Comprehensive Inorganic Chemistry III 3rd edn, 707−788 (Elsevier, 2023).

  20. Zhang, W. et al. Tracking excited-state charge and spin dynamics in iron coordination complexes. Nature 509, 345–348 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Woodhouse, M. D. & McCusker, J. K. Mechanistic origin of photoredox catalysis involving iron(II) polypyridyl chromophores. J. Am. Chem. Soc. 142, 16229–16233 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Liu, Y. et al. Towards longer-lived metal-to-ligand charge transfer states of iron(II) complexes: an N-heterocyclic carbene approach. Chem. Commun. 49, 6412–6414 (2013).

    Article  CAS  Google Scholar 

  23. Fredin, L. A. et al. Exceptional excited-state lifetime of an iron(II)–N-heterocyclic carbene complex explained. J. Phys. Chem. Lett. 5, 2066–2071 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Chábera, P. et al. FeII hexa N-heterocyclic carbene complex with a 528 ps metal-to-ligand charge-transfer excited-state lifetime. J. Phys. Chem. Lett. 9, 459–463 (2018).

    Article  PubMed  Google Scholar 

  25. Paulus, B. C., Nielsen, K. C., Tichnell, C. R., Carey, M. C. & McCusker, J. K. A modular approach to light capture and synthetic tuning of the excited-state properties of Fe(II)-based chromophores. J. Am. Chem. Soc. 143, 8086–8098 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Mukherjee, S., Bowman, D. N. & Jakubikova, E. Cyclometalated Fe(II) complexes as sensitizers in dye-sensitized solar cells. Inorg. Chem. 54, 560–569 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Braun, J. D. et al. Iron(II) coordination complexes with panchromatic absorption and nanosecond charge-transfer excited state lifetimes. Nat. Chem. 11, 1144–1150 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Steube, J. et al. Excited-state kinetics of an air-stable cyclometalated iron(II) complex. Chem. Eur. J. 25, 11826–11830 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Yarranton, J. T. & McCusker, J. K. Ligand-field spectroscopy of Co(III) complexes and the development of a spectrochemical series for low-spin d6 charge-transfer chromophores. J. Am. Chem. Soc. 144, 12488–12500 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Alowakennu, M. M., Ghosh, A. & McCusker, J. K. Direct evidence for excited ligand field state-based oxidative photoredox chemistry of a cobalt(III) polypyridyl photosensitizer. J. Am. Chem. Soc. 145, 20786–20791 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Kalsi, D., Dutta, S., Barsu, N., Rueping, M. & Sundararaju, B. Room-temperature C–H bond functionalization by merging cobalt and photoredox catalysis. ACS Catal. 8, 8115–8120 (2018).

    Article  CAS  Google Scholar 

  32. Pal, A. K., Li, C., Hanan, G. S. & Zysman‐Colman, E. Blue‐emissive cobalt(III) complexes and their use in the photocatalytic trifluoromethylation of polycyclic aromatic hydrocarbons. Angew. Chem. Int. Ed. 57, 8027–8031 (2018).

  33. Zhang, P. et al. Mass production of a single-atom cobalt photocatalyst for high-performance visible-light photocatalytic CO2 reduction. J. Mater. Chem. A 9, 26286–26297 (2021).

    Article  CAS  Google Scholar 

  34. Zhang, G. et al. External oxidant-free oxidative cross-coupling: a photoredox cobalt-catalyzed aromatic C–H thiolation for constructing C–S bonds. J. Am. Chem. Soc. 137, 9273–9280 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Chan, A. Y. et al. Exploiting the Marcus inverted region for first-row transition metal-based photoredox catalysis. Science 382, 191–197 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Langford, C. H., Group, H. E., Malkhasian, A. Y. S. & Sharma, D. K. Subnanosecond transients in the spectra of cobalt(III) amine complexes. J. Am. Chem. Soc. 106, 2727–2728 (1984).

    Article  CAS  Google Scholar 

  37. Ferrari, L. et al. A fast transient absorption study of Co(AcAc)3. Front. Chem. 7, https://doi.org/10.3389/fchem.2019.00348 (2019).

  38. Kaufhold, S. et al. Microsecond photoluminescence and photoreactivity of a metal-centered excited state in a hexacarbene–Co(III) complex. J. Am. Chem. Soc. 143, 1307–1312 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gray, B. & Beach, N. A. The electronic structures of octahedral metal complexes. I. Metal hexacarbonyls and hexacyanides. J. Am. Chem. Soc. 85, 2922–2927 (1963).

    Article  CAS  Google Scholar 

  40. Miskowski, V. M., Gray, H. B., Wilson, R. B. & Solomon, E. I. Position of the 3T1g1A1g transition in hexacyanocobaltate(III). Analysis of absorption and emission results. Inorg. Chem. 18, 1410–1412 (1978).

    Article  Google Scholar 

  41. McCusker, J. K., Walda, K. N., Magde, D. & Hendrickson, D. N. Picosecond excited-state dynamics in octahedral cobalt(III) complexes: intersystem crossing versus internal conversion. Inorg. Chem. 32, 394–399 (1993).

    Article  CAS  Google Scholar 

  42. Viaene, L., D’Olieslager, J., Ceulemans, A. & Vanquickenborne, L. G. Excited-state spectroscopy of hexacyanocobaltate(III). J. Am. Chem. Soc. 101, 1405–1409 (1979).

    Article  CAS  Google Scholar 

  43. Sinha, N., Wegeberg, C., Prescimone, A. & Wenger, O. S. Cobalt(III) carbene complex with an electronic excited-state structure similar to cyclometalated iridium(III) compounds. J. Am. Chem. Soc. 144, 9859–9873 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Caspar, J. V., Kober, E. M., Sullivan, B. P. & Meyer, T. J. Application of the energy gap law to the decay of charge-transfer excited states. J. Am. Chem. Soc. 104, 91–95 (1982).

    Article  Google Scholar 

  45. Englman, R. & Jortner, J. The energy gap law for radiationless transitions in large molecules. Mol. Phys. 18, 285–287 (1970).

    Article  Google Scholar 

  46. Bressler, C. & Chergui, M. Ultrafast X-ray absorption spectroscopy. Chem. Rev. 104, 1781–1812 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Damrauer, N. H., Boussie, T. R., Devenney, M. & McCusker, J. K. Effects of intraligand electron delocalization, steric tuning, and excited-state vibronic coupling on the photophysics of aryl-substituted bipyridyl complexes of Ru(II). J. Am. Chem. Soc. 119, 8253–8268 (1997).

    Article  CAS  Google Scholar 

  48. Strouse, G. F. et al. Influence of electronic delocalization in metal-to-ligand charge transfer excited states. Inorg. Chem. 34, 473–487 (1995).

    Article  CAS  Google Scholar 

  49. Bozzi, A. S. & Rocha, W. R. Calculation of excited state internal conversion rate constant using the one-effective mode Marcus-Jortner-Levich theory. J. Chem. Theory Comput. 19, 2316–2326 (2023).

    Article  CAS  PubMed  Google Scholar 

  50. Al-Obaidi, A. H. R. et al. Structural and kinetic studies of spin crossover in an iron(II) complex with a novel tripodal ligand. Inorg. Chem. 35, 5055–5060 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. McGarvey, J. J., Lawthers, I., Heremans, K. & Toftlund, H. Spin-state relaxation dynamics in iron(II) complexes: solvent on the activation and reaction and volumes for the 1A 5T interconversion. J. Chem. Soc. Chem. Commun. 29, 1575–1576 (1990).

    Google Scholar 

  52. Shari’Ati, Y. & Vura-Weis, J. Ballistic ΔS = 2 intersystem crossing in a cobalt cubane following ligand-field excitation probed by extreme ultraviolet spectroscopy. Phys. Chem. Chem. Phys. 23, 26990–26996 (2021).

    Article  PubMed  Google Scholar 

  53. Xie, Y., Baillargeon, J. & Hamann, T. W. Kinetics of regeneration and recombination reactions in dye-sensitized solar cells employing cobalt redox shuttles. J. Phys. Chem. C 119, 28155–28166 (2015).

    Article  CAS  Google Scholar 

  54. Carey, M. C., Adelman, S. L. & McCusker, J. K. Insights into the excited state dynamics of Fe(II) polypyridyl complexes from variable-temperature ultrafast spectroscopy. Chem. Sci. 10, 134–144 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Yaltseva, P. & Wenger, O. S. Photocatalysis gets energized by abundant metals. Science 382, 153–154 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. Zener, C. Non-adiabatic crossing of energy levels. Proc. R. Soc. Lond. A 132, 696–702 (1932).

    Google Scholar 

  57. Sutin, N. Nuclear, electronic, and frequency factors in electron-transfer reactions. Acc. Chem. Res. 15, 275–282 (1982).

    Article  CAS  Google Scholar 

  58. Buhks, E., Navon, G., Bixon, M. & Jortner, J. Spin conversion processes in solutions. J. Am. Chem. Soc. 102, 2918–2923 (1980).

    Article  CAS  Google Scholar 

  59. Marcus, R. A. On the theory of oxidation‐reduction reactions involving electron transfer. I. J. Chem. Phys. 24, 966–978 (1956).

    Article  CAS  Google Scholar 

  60. Miller, J. R., Calcaterra, L. T. & Closs, G. L. Intramolecular long-distance electron transfer in radical anions. The effects of free energy and solvent on the reaction rates. J. Am. Chem. Soc. 106, 3047–3049 (1984).

    Article  CAS  Google Scholar 

  61. Closs, G. L. & Miller, J. R. Intramolecular long-distance electron transfer in organic molecules. Science 240, 440–447 (1988).

    Article  CAS  PubMed  Google Scholar 

  62. Bowman, D. N. & Jakubikova, E. Low-spin versus high-spin ground state in pseudo-octahedral iron complexes. Inorg. Chem. 51, 6011–6019 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Miller, J. N. & McCusker, J. K. Outer-sphere effects on ligand-field excited-state dynamics: solvent dependence of high-spin to low-spin conversion in [Fe(bpy)3]2+. Chem. Sci. 11, 5191–5204 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ghosh, A., Yarranton, J. T. & McCusker, J. K. Data for ‘Establishing the origin of Marcus-inverted-region behavior in the excited-state dynamics of cobalt(III) polypyridyl complexes’. Figshare https://doi.org/10.6084/m9.figshare.25803085 (2024).

Download references

Acknowledgements

We thank E. Jakubikova and M. Deegbey from North Carolina State University for helpful discussions and suggestions. We also thank C. Larsen from University of Auckland for providing a useful new perspective on the Marcus analysis that we allude to in the main text and incorporated into the ESI. This work was supported in part through computational resources and services provided by the Institute for Cyber-Enabled Research at Michigan State University. The research was generously supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy under grant no. DE-FG02-01ER15282.

Author information

Authors and Affiliations

Authors

Contributions

A.G. performed the transient absorption experiments and analysed the data, performed the DFT calculations and created all the figures. J.T.Y synthesized the compounds. All authors contributed to the writing of the. J.K.M directed the project.

Corresponding author

Correspondence to James K. McCusker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Christopher Larsen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Computational studies to estimate reorganization energy.

(a) Tanabe-Sugano diagram appropriate for [Co(pyrro-bpy)3](PF6)3 based on the ligand-field analysis described in ref. 29. The diagram was constructing using the experimentally determined Racah B and C parameter values of 480 cm-1 and 3430 cm-1, respectively. The vertical dashed line corresponds to the value of 10 Dq found for [Co(pyrro-bpy)3](PF6)3. It should be emphasized that these diagrams reflect vertical transition energies, not the zero-point energy of a given excited state that ultimately determines which state lies lowest in energy. Inset: An expanded view of the region near the crossing point between the 5T2 and 3T1 ligand-field excited states. (b) Comparison between time-resolved absorption spectra obtained from a singular value decomposition analysis of the experimental transient absorption data and TD-DFT-computed excited-state absorption spectra for the structurally relaxed, lowest-energy S=1 (3MC) excited state. Inset: Spin density associated with the 3MC ligand-field excited state derived from DFT calculations carried out at the optimized equilibrium geometry, showing localization of the spin density predominantly on the metal center. Positive (excess α) and negative (excess β) spin density contributions are shown as green and orange isosurfaces, respectively (isovalue = 0.003). (c) DFT-predicted 1A11ES (pink) and 1A13MC (blue) vertical transition energies compared with their experimentally determined values (dashed lines). The black triangles at the bottom of the plot correspond to the energy difference between triplet energy at singlet optimized geometry and triplet optimized geometry (black triangles) as a function of % HF exchange.

Source data

Supplementary information

Supplementary Information

Supplementary Discussion.

Supplementary Data 1

Computational data and DFT coordinates of the optimized geometries.

Source data

Source Data Fig. 1

Data used to generate the lifetime traces plot.

Source Data Fig. 3

Kinetic data as a function of temperature and numeric values used to generate the Marcus-type plot shown in Fig. 3d.

Source Data Extended Data Fig. 1

Experimental transient absorption spectra data along with time-dependent DFT-computed excited-state absorption spectra and single-point energies used for benchmarking DFT methods.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, A., Yarranton, J.T. & McCusker, J.K. Establishing the origin of Marcus-inverted-region behaviour in the excited-state dynamics of cobalt(III) polypyridyl complexes. Nat. Chem. 16, 1665–1672 (2024). https://doi.org/10.1038/s41557-024-01564-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-024-01564-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing