Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-pressure synthesis of Ruddlesden–Popper nitrides


Layered perovskites with Ruddlesden–Popper-type structures are fundamentally important for low-dimensional properties, for example, photovoltaic hybrid iodides and superconducting copper oxides. Many such halides and oxides are known, but analogous nitrides are difficult to stabilize due to the high cation oxidation states required to balance the anion charges. Here we report the high-pressure synthesis of three single-layer Ruddlesden–Popper (K2NiF4 type) nitrides—Pr2ReN4, Nd2ReN4 and Ce2TaN4—along with their structural characterization and properties. The R2ReN4 materials (R = Pr and Nd) are metallic, and Nd2ReN4 has a ferromagnetic Nd3+ spin order below 15 K. Thermal decomposition gives R2ReN3 with a Peierls-type distortion and chains of Re–Re multiply bonded dimers. Ce2TaN4 has a structural transition driven by octahedral tilting, with local distortions and canted magnetic Ce3+ order evidencing two-dimensional Ce3+/Ce4+ charge ordering correlations. Our work demonstrates that Ruddlesden–Popper nitrides with varied structural, electronic and magnetic properties can be prepared from high-pressure synthesis, opening the door to related layered nitride materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Powder X-ray diffraction and neutron diffraction analysis of the K2NiF4-type nitrides Pr2ReN4, Nd2ReN4 and Ce2TaN4.
Fig. 2: Electronic and magnetic properties of Pr2ReN4.
Fig. 3: Magnetic properties of Nd2ReN4.
Fig. 4: Thermal decomposition of R2ReN4 to R2ReN3 (R = Pr, Nd).
Fig. 5: Temperature-dependent powder X-ray diffraction of Ce2TaN4.
Fig. 6: Magnetic properties of Ce2TaN4.

Similar content being viewed by others

Data availability

Crystallographic information on the R2MN4-type materials at all measured temperatures is made available through the Cambridge Crystallographic Data Centre (CCDC) by quoting reference numbers 2312701 (300 K), 2312702 (1.6 K) and 2312703 (150 K) for Ce2TaN4; 2312720 (1.5 K), 2312721 (25 K), 2312722 (10 K), 2312723 (300 K), 2312724 (150 K) and 2312725 (15 K) for Nd2ReN4; and 2312726 (1.5 K), 2312727 (300 K) and 2312728 (20 K) for Pr2ReN4. Copies of the data can be obtained free of charge via All raw data files of powder diffraction, powder neutron diffraction and magnetization measurements are made available through the Open Data LMU repository under


  1. Trebst, S. & Hickey, C. Kitaev materials. Phys. Rep. 950, 1–37 (2022).

    Article  CAS  Google Scholar 

  2. Luke, G. M. et al. Time-reversal symmetry-breaking superconductivity in Sr2RuO4. Nature 394, 558–561 (1998).

    Article  CAS  Google Scholar 

  3. Bednorz, J. G. & Müller, K. A. Possible high Tc superconductivity in the Ba–La–Cu–O system. Z. Phys. B 64, 189–193 (1986).

  4. Fair, M. J., Gregson, A. K., Day, P. & Hutchings, M. T. Neutron scattering study of the magnetism of Rb2CrCl4, a two-dimensional easy-plane ferromagnet. Physica B+C 86–88, 657–659 (1977).

    Article  Google Scholar 

  5. Stoumpos, C. C. et al. Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28, 2852–2867 (2016).

    Article  CAS  Google Scholar 

  6. Tokunaga, M., Miura, N. & Moritomo, Y. Colossal magnetoresistance in layered manganites (La,Nd)1/2Sr3/2MnO4. Phys. B 284–288, 1990–1991 (2000).

    Article  Google Scholar 

  7. Stranks, S. D. & Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10, 391–402 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Wagner, P., Wackers, G., Cardinaletti, I., Manca, J. & Vanacken, J. From colossal magnetoresistance to solar cells: an overview on 66 years of research into perovskites. Phys. Status Solidi A 214, 1700394 (2017).

    Article  Google Scholar 

  9. Chen, B.-H. & Eichhorn, B. Synthesis and structure of two new Ba2MS4 phases where M = Zr, Hf: a new series of K2NiF4 solids. Mater. Res. Bull. 26, 1035–1040 (1991).

    Article  CAS  Google Scholar 

  10. Chen, B.-H., Eichhorn, B. & Wong-Ng, W. Structural reinvestigation of Ba3Zr2S7 by single-crystal X-ray diffraction. Acta Crystallogr. C 50, 161–164 (1994).

  11. Diot, N. et al. Crystal structure determination of the oxynitride Sr2TaO3N. J. Solid State Chem. 146, 390–393 (1999).

    Article  CAS  Google Scholar 

  12. Marchand, R., Pastuszak, R., Laurent, Y. & Roult, G. Structure cristalline de Nd2AlO3N. Determination de l’ordre oxygene-azote par diffraction de neutrons. Rev. Chim. Miner. 19, 684–689 (1982).

    CAS  Google Scholar 

  13. Niewa, R., Vajenine, G. V., DiSalvo, F. J., Luob, H. & Yelon, W. B. Unusual bonding in ternary nitrides: preparation, structure and properties of Ce2MnN3. Z. Naturforsch. B J. Chem. Sci. 53, 63–74 (1998).

    Article  CAS  Google Scholar 

  14. Cario, L. et al. Ln3T2N6 (Ln=La, Ce, Pr; T=Ta, Nb), a new family of ternary nitrides isotypic to a high Tc cuprate superconductor. J. Solid State Chem. 162, 90–95 (2001).

    Article  CAS  Google Scholar 

  15. Smet, P. F., Botterman, J., Van den Eeckhout, K., Korthout, K. & Poelman, D. Persistent luminescence in nitride and oxynitride phosphors: a review. Opt. Mater. 36, 1913–1919 (2014).

    Article  CAS  Google Scholar 

  16. Fuchigami, M., Inumaru, K. & Yamanaka, S. Interstitial binary nitride ReNx phases prepared by pulsed laser deposition: structure and superconductivity dependence on nitrogen stoichiometry. J. Alloys Compd. 486, 621–627 (2009).

    Article  CAS  Google Scholar 

  17. Talley, K. R., Perkins, C. L., Diercks, D. R., Brennecka, G. L. & Zakutayev, A. Synthesis of LaWN3 nitride perovskite with polar symmetry. Science 374, 1488–1491 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Vepřek, S. & Reiprich, S. A concept for the design of novel superhard coatings. Thin Solid Films 268, 64–71 (1995).

    Article  Google Scholar 

  19. Coey, J. M. D. & Sun, H. Improved magnetic properties by treatment of iron-based rare earth intermetallic compounds in anmonia. J. Magn. Magn. Mater. 87, L251–L254 (1990).

    Article  CAS  Google Scholar 

  20. Andersen, T., Haugen, H. K. & Hotop, H. Binding energies in atomic negative ions: III. J. Phys. Chem. Ref. Data 28, 1511–1533 (1999).

    Article  CAS  Google Scholar 

  21. Glasson, D. R. & Jayaweera, S. A. A. Formation and reactivity of nitrides I. Review and introduction. J. Appl. Chem. 18, 65–77 (1968).

    Article  CAS  Google Scholar 

  22. Luo, Y.-R. Comprehensive Handbook of Chemical Bond Energies (Taylor and Francis, 2007).

  23. Alkhaldi, H. & Kroll, P. Chemical potential of nitrogen at high pressure and high temperature: application to nitrogen and nitrogen-rich phase diagram calculations. J. Phys. Chem. C 123, 7054–7060 (2019).

    Article  CAS  Google Scholar 

  24. Bykov, M. et al. Fe–N system at high pressure reveals a compound featuring polymeric nitrogen chains. Nat. Commun. 9, 2756 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gregoryanz, E. et al. Synthesis and characterization of a binary noble metal nitride. Nat. Mater. 3, 294–297 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Crowhurst, J. C. Synthesis and characterization of the nitrides of platinum and iridium. Science 311, 1275–1278 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Kloß, S. D. et al. Preparation of iron(IV) nitridoferrate Ca4FeN4 through azide-mediated oxidation under high-pressure conditions. Nat. Commun. 12, 571 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kloß, S. D., Weidemann, M. L. & Attfield, J. P. Preparation of bulk‐phase nitride perovskite LaReN3 and topotactic reduction to LaNiO2‐type LaReN2. Angew. Chem. Int. Ed. 60, 22260–22264 (2021).

    Article  Google Scholar 

  29. Kloß, S. D., Ritter, C. & Attfield, J. P. Neutron diffraction study of nitride perovskite LaReN3. Z. Anorg. Allg. Chem. 648, e202200194 (2022).

    Article  Google Scholar 

  30. Flores-Livas, J. A., Sarmiento-Pérez, R., Botti, S., Goedecker, S. & Marques, M. A. L. Rare-earth magnetic nitride perovskites. J. Phys. Mater. 2, 025003 (2019).

    Article  CAS  Google Scholar 

  31. Liu, X., Fu, J. & Chen, G. First-principles calculations of electronic structure and optical and elastic properties of the novel ABX3-type LaWN3 perovskite structure. RSC Adv. 10, 17317–17326 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ha, V.-A., Lee, H. & Giustino, F. CeTaN3 and CeNbN3: prospective nitride perovskites with optimal photovoltaic band gaps. Chem. Mater. 34, 2107–2122 (2022).

    Article  CAS  Google Scholar 

  33. Bhuvanesh, N. S. P. & Gopalakrishnan, J. Solid-state chemistry of early transition-metal oxides containing d0 and d1 cations. J. Mater. Chem. 7, 2297–2306 (1997).

    Article  CAS  Google Scholar 

  34. Coey, J. M. D. Magnetism and Magnetic Materials (Cambridge Univ. Press, 2001).

  35. Földeáki, M., Ledbetter, H. & Hidaka, Y. Magnetic susceptibility of Pr2CuO4 monocrystals and polycrystals. J. Appl. Phys. 70, 5736–5738 (1991).

    Article  Google Scholar 

  36. Tsuchida, T. & Wallace, W. E. Magnetic characteristics of compounds of cerium and praseodymium with Va elements. J. Chem. Phys. 43, 2885–2889 (1965).

    Article  CAS  Google Scholar 

  37. Matsuda, M. et al. Three-dimensional magnetic structures and rare-earth magnetic ordering in Nd2CuO4 and Pr2CuO4. Phys. Rev. B 42, 10098–10107 (1990).

    Article  CAS  Google Scholar 

  38. Tsuchida, T., Nakamura, Y. & Kaneko, T. Magnetic properties of neodymium compounds with Va elements. J. Phys. Soc. Jpn 26, 284–286 (1969).

    Article  CAS  Google Scholar 

  39. Bleaney, B. Crystal field effects and the co-operative state I. A primitive theory. Proc. R. Soc. A 276, 19–27 (1963).

    CAS  Google Scholar 

  40. Schobinger-Papamantellos, P., Fischer, P., Vogt, O. & Kaldis, E. Magnetic ordering of neodymium monopnictides determined by neutron diffraction. J. Phys. C 6, 725–737 (1973).

  41. Attfield, J. P. Orbital molecules in electronic materials. APL Mater. 3, 041510 (2015).

    Article  Google Scholar 

  42. Cotton, F. A. & Harris, C. B. The crystal and molecular structure of dipotassium octachlorodirhenate(III) dihydrate, K2[Re2Cl8]2H2O. Inorg. Chem. 4, 330–333 (1965).

    Article  CAS  Google Scholar 

  43. Yamada, K. et al. Determination of space group and refinement of structure parameters for La2CuO4-δ crystals. Jpn. J. Appl. Phys. 27, 1132 (1988).

    Article  CAS  Google Scholar 

  44. Liu, T., Holzapfel, N. P. & Woodward, P. M. Understanding structural distortions in hybrid layered perovskites with the n = 1 Ruddlesden–Popper structure. IUCrJ 10, 385–396 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rodríguez-Carvajal, J. A program for calculating irreducible representation of little groups and basis functions of polar and axial vector properties. Program included FullProf Suite, version July-2010 (Institut Laue-Langevin, 2010).

  46. Irmler, M. & Meyer, G. Rhenium trichloride, ReCl3, and its 5/3‐hydrate synthesis, crystal structure, and thermal expansion. Z. Anorg. Allg. Chem. 552, 81–89 (1987).

    Article  CAS  Google Scholar 

  47. Simonov, A. & Goodwin, A. L. Designing disorder into crystalline materials. Nat. Rev. Chem. 4, 657–673 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Levanyuk, A. P. & Sannikov, D. G. Improper ferroelectrics. Sov. Phys. Uspekhi 17, 199–214 (1974).

    Article  Google Scholar 

  49. Benedek, N. A. & Fennie, C. J. Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling. Phys. Rev. Lett. 106, 107204 (2011).

    Article  PubMed  Google Scholar 

  50. APEX3 (Bruker-AXS, 2016).

  51. XPREP (Bruker-AXS, 2001).

  52. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

  53. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 45, 849–854 (2012).

    Article  CAS  Google Scholar 

  54. Coelho, A. A. TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Crystallogr. 51, 210–218 (2018).

    Article  CAS  Google Scholar 

  55. Momma, K. & Izumi, F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  CAS  Google Scholar 

  56. Penney, W. G. & Schlapp, R. The influence of crystalline fields on the susceptibilities of salts of paramagnetic ions. I. The rare earths, especially Pr and Nd. Phys. Rev. 41, 194–207 (1932).

    Article  CAS  Google Scholar 

  57. Bêche, E., Charvin, P., Perarnau, D., Abanades, S. & Flamant, G. Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz). Surf. Interface Anal. 40, 264–267 (2008).

    Article  Google Scholar 

Download references


We gratefully acknowledge funding from the Deutsche Forschungsgemeinschaft through Emmy-Noether programme KL 3368/3-1 (S.D.K.) and the LMU Excellence Programme (S.D.K.). We gratefully acknowledge the allocation of beamtime at the ISIS WISH diffractometer (proposal 2220381) and the Institut Laue-Langevin D20 beamline (proposal 88413,

Author information

Authors and Affiliations



M.W. and D.W. performed physical measurements on the Ruddlesden–Popper materials, C.M. prepared samples of Ce2TaN4 and S.K. performed and analysed X-ray photoelectron spectroscopy measurements. C.R. and P.M. are beamline scientists who performed neutron diffraction measurements and aided in the analysis of data. J.P.A. aided in the analysis of data and writing of the paper. S.D.K. supervised the project, performed synthesis experiments, analysed data and wrote the paper.

Corresponding author

Correspondence to Simon D. Kloß.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Shintaro Ishiwata and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Scanning electron microscopy.

Scanning electron microscopy images of a Pr2ReN4, b Nd2ReN4 and c Ce2TaN4.

Extended Data Fig. 2 PND data of Pr2ReN4.

Rietveld fits for Pr2ReN4 to WISH PND data collected at a 1.5 K, b 20, and c 300 K. Q is in Å−1.

Extended Data Fig. 3 PND data of Nd2ReN4.

Rietveld fits for Nd2ReN4 to WISH PND data collected at a 1.5, b 10, c 15 K, d 25 K, e 150 K, and f 300 K. Q is in Å−1.

Extended Data Fig. 4 Micrograph of sintered Pr2ReN4 sample.

Sintered piece of Pr2ReN4 as obtained from the high-pressure experiment used for resistivity measurements. Contacts are made with gold-wire and Ag-varnish.

Extended Data Fig. 5 Resistivity measurement of Nd2ReN4.

Resistivity measurement made on a cold-pressed pellet of Nd2ReN4 with the van der Pauw method. The rise in resistivity by a factor of ca. 3 between 300 and 2 K is likely due to grain boundary effects. The activation energy, extracted from the linear part of the plot from a fit of log(ρ) vs. 1/T is ca. 2 meV, suggesting grain boundary resistances between particles with metallic conductivity.

Extended Data Fig. 6 Susceptibility measurements of R2ReN4.

Susceptibility measurements of R2ReN4 in fields of 3 T for a Pr2ReN4 and 0.1 T for b Nd2ReN4. Curie-Weiss fits yielded for Pr: µeff = 3.68(1) µB/Pr3+ and Θ = −25.9(3) K, for Nd: µeff = 3.65(1) µB / Nd3+ and Θ = 4.0(9) K.

Extended Data Fig. 7 Magnetic powder neutron diffraction of Nd2ReN4.

Magnetic structure Rietveld refinement of 10−15 K difference PND data of Nd2ReN4. Magnetic reflections (k-vector (0 0 0)) are indexed based on the nuclear structure. The intensity mismatches at higher Q-space reflect small thermal changes in the crystal structure. Q is in Å−1.

Extended Data Fig. 8 Temperature dependent measurements on R2ReN4 and R2ReN3.

Temperature-evolution of lattice parameters, volume, phase fraction (p.f.), as well as differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) for Pr2ReN4 (left, black) and Nd2ReN4 (right, black). Lattice parameters of the R2ReN3 phases are displayed as orange diamonds.

Extended Data Fig. 9 Rietveld fits for Ce2TaN4.

ILL D20 data collected at several temperatures. Q is in Å−1.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4, Discussion and Tables 1–28.

Supplementary Data 1

Crystallographic data for Ce2TaN4 at 1.6 K; CCDC reference no. 2312702.

Supplementary Data 2

Crystallographic data for Ce2TaN4 at 150 K; CCDC reference no. 2312703.

Supplementary Data 3

Crystallographic data for Ce2TaN4 at 300 K; CCDC reference no. 2312701.

Supplementary Data 4

Crystallographic data for Nd2ReN4 at 1.5 K; CCDC reference no. 2312720.

Supplementary Data 5

Crystallographic data for Nd2ReN4 at 10 K; CCDC reference no. 2312722.

Supplementary Data 6

Crystallographic data for Nd2ReN4 at 15 K; CCDC reference no. 2312725.

Supplementary Data 7

Crystallographic data for Nd2ReN4 at 25 K; CCDC reference no. 2312721.

Supplementary Data 8

Crystallographic data for Nd2ReN4 at 150 K; CCDC reference no. 2312724.

Supplementary Data 9

Crystallographic data for Nd2ReN4 at 300 K; CCDC reference no. 2312723.

Supplementary Data 10

Crystallographic data for Pr2ReN4 at 1.5 K; CCDC reference no. 2312726.

Supplementary Data 11

Crystallographic data for Pr2ReN4 at 20 K; CCDC reference no. 2312728.

Supplementary Data 12

Crystallographic data for Pr2ReN4 at 300 K; CCDC reference no. 2312727.

Supplementary Data 13

The single-crystal X-ray diffraction crystallographic data for Pr2ReN4 at 300 K; CCDC reference no. 2312727.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weidemann, M., Werhahn, D., Mayer, C. et al. High-pressure synthesis of Ruddlesden–Popper nitrides. Nat. Chem. (2024).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing