Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A crystalline stannyne

Abstract

The synthesis of heteronuclear alkyne analogues incorporating heavier group 14 elements (R1–C≡E–R2, E = Si, Ge, Sn, Pb) has posed a long-standing challenge. Neutral silynes (R1–C≡Si(L)–R2) and germynes (R1–C≡Ge(L)–R2) stabilized by a Lewis base have achieved sufficient stability for structural characterization at low temperatures. Here we show the isolation of a base-free stannyne (R1–C≡Sn–R2) at room temperature, achieved through the strategic use of a bulky cyclic phosphino ligand in combination with a bulky terphenyl substituent. Despite an allenic structure with strong delocalization of π-electrons, this compound exhibits adjacent ambiphilic carbon and tin centres, forming a carbon–tin multiple bond with ionic character. The stannyne demonstrates reactivity similar to carbenes or stannylenes, reacting with 1-adamantyl isocyanide and 2,3-dimethyl-1,3-butadiene. Additionally, its carbon–tin bond can be saturated by Et3N·HCl or cleaved by isopropyl isocyanate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual overview and notable examples.
Fig. 2: Synthesis of stannylenyl diazomethane 2 and stannyne 3 along with its resonance forms.
Fig. 3: Single-crystal X-ray diffraction solid-state structures of stannylenyl diazomethane 2 and stannyne 3 at 100 K with thermal ellipsoids at the 30% probability level and selective labelling.
Fig. 4: Depiction of selected FMOs (isovalue = 0.035) and ELF plot of stannyne 3.
Fig. 5: Reactivity of stannyne 3 towards 1-adamantyl isocyanide, 2,3-dimethyl-1,3-butadiene, triethylammonium chloride and isopropyl isocyanate.
Fig. 6: Single-crystal X-ray diffraction solid-state structures of compounds 4, 5, 6 and 7 at 100 K with thermal ellipsoids at the 30% probability level and selective labelling.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition nos. 2261177 (2), 2261179 (3), 2261180 (4), 2261178 (5), 2261181 (6) and 2261213 (7). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. All other data are presented in the main text and the Supplementary Information and are also available from the corresponding authors on reasonable request.

References

  1. Diederich, F. & Stang, P. J. Modern Acetylene Chemistry (Wiley, 2008).

  2. Sekiguchi, A., Kinjo, R. & Ichinohe, M. A stable compound containing a silicon-silicon triple bond. Science 305, 1755–1757 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Wiberg, N., Vasisht, S. K., Fischer, G. & Mayer, P. Disilynes. III [1] A relatively stable disilyne RSi≡SiR (R = SiMe(SitBu3)2). Z. Anorg. Allg. Chem. 630, 1823–1828 (2004).

    Article  CAS  Google Scholar 

  4. Stender, M., Phillips, A. D., Wright, R. J. & Power, P. P. Synthesis and characterization of a digermanium analogue of an alkyne. Angew. Chem. Int. Ed. 41, 1785–1787 (2002).

    Article  CAS  Google Scholar 

  5. Phillips, A. D., Wright, R. J., Olmstead, M. M. & Power, P. P. Synthesis and characterization of 2,6-Dipp2-H3C6SnSnC6H3-2,6-Dipp2 (Dipp = C6H3-2,6-Pri2): a tin analogue of an alkyne. J. Am. Chem. Soc. 124, 5930–5931 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Pu, L., Twamley, B. & Power, P. P. Synthesis and characterization of 2,6-Trip2H3C6PbPbC6H3-2,6-Trip2 (Trip = C6H2-2,4,6-i-Pr3): a stable heavier group 14 element analogue of an alkyne. J. Am. Chem. Soc. 122, 3524–3525 (2000).

    Article  CAS  Google Scholar 

  7. Power, P. P. Main-group elements as transition metals. Nature 463, 171–177 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Fischer, R. C. & Power, P. P. π-Bonding and the lone pair effect in multiple bonds involving heavier main group elements: developments in the new millennium. Chem. Rev. 110, 3877–3923 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Power, P. P. An update on multiple bonding between heavier main group elements: the importance of Pauli repulsion, charge-shift character, and London dispersion force effects. Organometallics 39, 4127–4138 (2020).

    Article  CAS  Google Scholar 

  10. Sekiguchi, A. Disilyne with a silicon-silicon triple bond: a new entry to multiple bond chemistry. Pure Appl. Chem. 80, 447–457 (2008).

    Article  CAS  Google Scholar 

  11. Power, P. P. Silicon, germanium, tin and lead analogues of acetylenes. Chem. Commun. 38, 2091–2101 (2003).

    Article  Google Scholar 

  12. Sugiyama, Y. et al. Synthesis and properties of a new kinetically stabilized digermyne: new insights for a germanium analogue of an alkyne. J. Am. Chem. Soc. 128, 1023–1031 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Lai, T. Y., Tao, L., Britt, R. D. & Power, P. P. Reversible Sn-Sn triple bond dissociation in a distannyne: support for charge-shift bonding character. J. Am. Chem. Soc. 141, 12527–12530 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Queen, J. D., Phung, A. C., Caputo, C. A., Fettinger, J. C. & Power, P. P. Metathetical exchange between metal-metal triple bonds. J. Am. Chem. Soc. 142, 2233–2237 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Ding, Y., Zhang, J., Li, Y. & Cui, C. Disilicon dicarbonyl complex: synthesis and protonation of CO with O-H bond. J. Am. Chem. Soc. 144, 20566–20570 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Bader, R. F. W. Vibrationally induced perturbations of molecular electron distribution. Can. J. Chem. 40, 1164–1175 (1962).

    Article  CAS  Google Scholar 

  17. Pearson, R. G. Symmetry rule for predicting molecular structure and reactivity. J. Am. Chem. Soc. 91, 1252–1254 (1969).

    Article  CAS  Google Scholar 

  18. Pearson, R. G. Concerning Jahn-Teller effects. Proc. Natl Acad. Sci. USA 72, 2104–2106 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Grev, R. S. Structure and bonding in the parent hydrides and multiply bonded silicon and germanium compounds: from MHn to R2M=M′R2 and RM≡M′R. Adv. Organomet. Chem. 33, 125–170 (1991).

    Article  CAS  Google Scholar 

  20. Power, P. P. Interaction of multiple bonded and unsaturated heavier main group compounds with hydrogen, ammonia, olefins and related molecules. Acc. Chem. Res. 44, 627–637 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Peng, Y., Ellis, B. D., Wang, X., Fettinger, J. C. & Power, P. P. Reversible reactions of ethylene with distannynes under ambient conditions. Science 325, 1668–1670 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Melen, R. L. Frontiers in molecular p-block chemistry: from structure to reactivity. Science 363, 479–484 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Spikes, G. H., Fettinger, J. C. & Power, P. P. Facile activation of dihydrogen by an unsaturated heavier main group compound. J. Am. Chem. Soc. 127, 12232–12233 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Apeloig, Y. & Karni, M. Triple bonds to silicon. Substituent effects on the thermodynamic and kinetic stabilities of silynes relative to their isomeric silylidenes and silavinylidenes. Organometallics 16, 310–312 (1997).

    Article  CAS  Google Scholar 

  25. Danovich, D. et al. Silynes (RC≡SiR′) and disilynes (RSi≡SiR′): why are less bonds worth energetically more? Angew. Chem. Int. Ed. 40, 4023–4026 (2001).

    Article  CAS  Google Scholar 

  26. Bibal, C., Mazières, S., Gornitzka, H. & Couret, C. A route to a germanium-carbon triple bond: first chemical evidence for a germyne. Angew. Chem. Int. Ed. 40, 952–954 (2001).

    Article  CAS  Google Scholar 

  27. Wu, P.-C. & Su, M.-D. Theoretical designs for germaacetylene (RCGeR′): a new target for synthesis. Dalton Trans. 40, 4253–4259 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Ploshnik, E., Danovich, D., Hiberty, P. C. & Shaik, S. The nature of the idealized triple bonds between principal elements and the σ origins of trans-bent geometries—a valence bond study. J. Chem. Theory Comput. 7, 955–968 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Wu, P.-C. & Su, M.-D. Triply bonded stannaacetylene (RC≡SnR): theoretical designs and characterization. Inorg. Chem. 50, 6814–6822 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Wu, P.-C. & Su, M.-D. A new target for synthesis of triply bonded plumbacetylene (RC≡PbR): a theoretical design. Organometallics 30, 3293–3301 (2011).

    Article  CAS  Google Scholar 

  31. Gau, D. et al. Synthesis and structure of a base-stabilized C-phosphino-Si-amino silyne. Angew. Chem. Int. Ed. 49, 6585–6588 (2010).

    Article  CAS  Google Scholar 

  32. Berthe, J. et al. Synthesis and reactivity of a phosphine-stabilized monogermanium analogue of alkynes. J. Am. Chem. Soc. 133, 15930–15933 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Takahashi, S. et al. Base-stabilized cationic silyne with a π-accepting phosphonio substituent. Inorg. Chem. 62, 6488–6498 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Setaka, W., Hirai, K., Tomioka, H., Sakamoto, K. & Kira, M. Stannaacetylene (RSnCR′) showing carbene-like reaction mode. J. Am. Chem. Soc. 126, 2696–2697 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Setaka, W., Hirai, K., Tomioka, H., Sakamoto, K. & Kira, M. Formation of a stannylstannylenevia intramolecular carbene addition of a transient stannaacetylene (RSnCR′). Chem. Commun. 43, 6558–6560 (2008).

    Article  Google Scholar 

  36. Igau, A., Grutzmacher, H., Baceiredo, A. & Bertrand, G. Analogous α,α′-bis-carbenoid, triply bonded species: synthesis of a stable γ3-phosphino carbene-γ5-phosphaacetylene. J. Am. Chem. Soc. 110, 6463–6466 (1988).

    Article  CAS  Google Scholar 

  37. Hu, C. et al. Crystalline monometal-substituted free carbenes. Chem 8, 2278–2289 (2022).

    Article  CAS  Google Scholar 

  38. Wei, R., Wang, X.-F., Hu, C. & Liu, L. L. Synthesis and reactivity of copper carbyne anion complexes. Nat. Synth. 2, 357–363 (2023).

    Article  Google Scholar 

  39. Bourissou, D., Guerret, O., Gabbaï, F. P. & Bertrand, G. Stable carbenes. Chem. Rev. 100, 39–92 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Vignolle, J., Cattoën, X. & Bourissou, D. Stable noncyclic singlet carbenes. Chem. Rev. 109, 3333–3384 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Simons, R. S., Pu, L., Olmstead, M. M. & Power, P. P. Synthesis and characterization of the monomeric diaryls M{C6H3-2,6-Mes2}2 (M = Ge,Sn or Pb; Mes = 2,4,6-Me3C6H2) and dimeric aryl-metal chlorides [M(Cl){C6H3-2,6-Mes2}]2 (M=Ge or Sn). Organometallics 16, 1920–1925 (1997).

  42. Kato, T., Gornitzka, H., Baceiredo, A., Savin, A. & Bertrand, G. On the electronic structure of (phosphino)(silyl)carbenes: single-crystal X-ray diffraction and ELF analyses. J. Am. Chem. Soc. 122, 998–999 (2000).

    Article  CAS  Google Scholar 

  43. Pyykkö, P. & Atsumi, M. Molecular double-bond covalent radii for elements Li-E112. Chem. Eur. J. 15, 12770–12779 (2009).

    Article  PubMed  Google Scholar 

  44. Queen, J. D., Irvankoski, S., Fettinger, J. C., Tuononen, H. M. & Power, P. P. A monomeric aluminum imide (iminoalane) with Al-N triple-bonding: bonding analysis and dispersion energy stabilization. J. Am. Chem. Soc. 143, 6351–6356 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Klein, J. E. M. N. & Knizia, G. cPCET versus HAT: a direct theoretical method for distinguishing X-H bond-activation mechanisms. Angew. Chem. Int. Ed. 57, 11913–11917 (2018).

    Article  CAS  Google Scholar 

  46. Knizia, G. Intrinsic atomic orbitals: an unbiased bridge between quantum theory and chemical concepts. J. Chem. Theory Comput. 9, 4834–4843 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Savin, A., Nesper, R., Wengert, S. & Fässler, T. F. ELF: the electron localization function. Angew. Chem. Int. Ed. Engl. 36, 1808–1832 (1997).

    Article  CAS  Google Scholar 

  48. Igau, A., Baceiredo, A., Gruetzmacher, H., Pritzkow, H. & Bertrand, G. Synthesis, reactivity and crystal structure of the first methylenephosphonium ion: a severely twisted valence isoelectronic olefin. J. Am. Chem. Soc. 111, 6853–6854 (1989).

    Article  CAS  Google Scholar 

  49. Hu, C., Wang, X.-F., Li, J., Chang, X.-Y. & Liu, L. L. A stable rhodium-coordinated carbene with a σ0π2 electronic configuration. Science 383, 81–85 (2024).

    Article  CAS  PubMed  Google Scholar 

  50. Grützmacher, H., Freitag, S., Herbst-Irmer, R. & Sheldrick, G. S. Investigations of the structure and reactivity of a stannaketenimine. Angew. Chem. Int. Ed. Engl. 31, 437–438 (1992).

    Article  Google Scholar 

  51. Mansikkamäki, A., Power, P. P. & Tuononen, H. M. Computational analysis of n→π* back-bonding in metallylene-isocyanide complexes R2MCNR′ (M = Si, Ge, Sn; R = tBu, Ph; R′ = Me, tBu, Ph). Organometallics 32, 6690–6700 (2013).

    Article  Google Scholar 

  52. Mizuhata, Y., Sasamori, T. & Tokitoh, N. Stable heavier carbene analogues. Chem. Rev. 109, 3479–3511 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Setaka, W., Sakamoto, K., Kira, M. & Power, P. P. Synthesis and structure of stable tri-tert-butylgermyl-substituted stannylene and germylene. Organometallics 20, 4460–4462 (2001).

    Article  CAS  Google Scholar 

  54. Protchenko, A. V. et al. Enabling and probing oxidative addition and reductive elimination at a group 14 metal center: cleavage and functionalization of E-H bonds by a bis(boryl)stannylene. J. Am. Chem. Soc. 138, 4555–4564 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Emig, N., Tejeda, J., Réau, R. & Bertrand, G. The surprising instability of (phosphino)(stannyl)carbenes! Tetrahedron Lett. 36, 4231–4234 (1995).

    Article  CAS  Google Scholar 

  56. Li, Z. et al. N-Heterocyclic carbenes as promotors for the rearrangement of phosphaketenes to phosphaheteroallenes: a case study for OCP to OPC constitutional isomerism. Angew. Chem. Int. Ed. 55, 6018–6022 (2016).

    Article  CAS  Google Scholar 

  57. APEX suite of crystallographic software, APEX 3 version 2015.5-2 (Bruker AXS, 2015).

  58. CCD, SAINT v8.40B (Bruker AXS, 2019).

  59. Sheldrick, G. M. SHELXT-integrated space-group and crystal-structure determination. Acta Crystallogr. A A71, 3–8 (2015).

    Article  Google Scholar 

  60. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C71, 3–8 (2015).

    Google Scholar 

  61. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).

    Article  CAS  Google Scholar 

  62. Frisch, M. J. et al. Gaussin 16 revision B.01 (Gaussian, 2016).

  63. Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  64. Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994).

    Article  CAS  Google Scholar 

  65. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104–154133 (2010).

    Article  PubMed  Google Scholar 

  66. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Grimme, S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem. 25, 1463–1473 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Glendening, E. D. et al. NBO 7.0 (Univ. Wisconsin, 2018).

  69. Neese, F. The ORCA program system. WIREs Comput. Mol. Sci. 2, 73–78 (2012).

    Article  CAS  Google Scholar 

  70. Andrienko, G. A. ChemCraft, http://www.chemcraftprog.com

  71. Van Gisbergen, S., Snijders, J. & Ziegler, T. Chemistry with ADF. J. Comput. Chem. 22, 931–967 (2001).

    Article  Google Scholar 

  72. Chang, C., Pelissier, M. & Durand, P. Regular two-component Pauli-like effective Hamiltonians in Dirac theory. Phys. Scr. 34, 394–404 (1986).

    Article  CAS  Google Scholar 

  73. Heully, J. L., Lindgren, I., Lindroth, E., Lundqvist, S. & Martensson-Pendrill, A. M. Diagonalisation of the Dirac Hamiltonian as a basis for a relativistic many-body procedure. J. Phys. B 19, 2799–2815 (1986).

    Article  CAS  Google Scholar 

  74. Wilson, P. J., Bradley, T. J. & Tozer, D. J. Hybrid exchange-correlation functional determined from thermochemical data and ab initio potentials. J. Chem. Phys. 115, 9233–9242 (2001).

    Article  CAS  Google Scholar 

  75. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta vlence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Weigend, F. Accurate coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 8, 1057–1065 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China (22350004, 22271132 and 22101114), Shenzhen Science and Technology Innovation Program (20231120110042001 and JCYJ20220530114806015), Guangdong Innovation & Entrepreneurial Research Team Program (2021ZT09C278), high level of special funds (G03050K003) and Guangdong Provincial Key Laboratory of Catalysis (2020B121201002). We also acknowledge the assistance of SUSTech Core Research Facilities. The theoretical work was supported by the Center for Computational Science and Engineering at SUSTech.

Author information

Authors and Affiliations

Authors

Contributions

L.L.L. conceptualized and supervised the project. X.-F.W. and R.W. performed the experimental work. L.L.L., X.-F.W., C.H. and R.W. performed the computational work. X.-F.W., C.H., J.L., R.W. and X.Z. performed the X-ray crystallographic analyses. L.L.L. wrote the paper with input from all authors. All authors discussed the results in detail and commented on the paper.

Corresponding author

Correspondence to Liu Leo Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–72, Tables 1–8, starting material preparation, experimental procedures and product characterization, computational details.

Supplementary Data 1

Crystallographic data for compound 2; CCDC reference 2261177.

Supplementary Data 2

Crystallographic data for compound 3; CCDC reference 2261179.

Supplementary Data 3

Crystallographic data for compound 4; CCDC reference 2261180.

Supplementary Data 4

Crystallographic data for compound 5; CCDC reference 2261178.

Supplementary Data 5

Crystallographic data for compound 6; CCDC reference 2261181.

Supplementary Data 6

Crystallographic data for compound 7; CCDC reference 2261213.

Supplementary Data 7

Cartesian Coordinates for the optimized structures by DFT calculations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XF., Hu, C., Li, J. et al. A crystalline stannyne. Nat. Chem. (2024). https://doi.org/10.1038/s41557-024-01555-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-024-01555-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing