Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Atomically dispersed low-valent Au boosts photocatalytic hydroxyl radical production

Abstract

Providing affordable, safe drinking water and universal sanitation poses a grand societal challenge. Here we developed atomically dispersed Au on potassium-incorporated polymeric carbon nitride material that could simultaneously boost photocatalytic generation of ·OH and H2O2 with an apparent quantum efficiency over 85% at 420 nm. Potassium introduction into the poly(heptazine imide) matrix formed strong K–N bonds and rendered Au with an oxidation number close to 0. Extensive experimental characterization and computational simulations revealed that the low-valent Au altered the materials’ band structure to trap highly localized holes produced under photoexcitation. These highly localized holes could boost the 1e water oxidation reaction to form highly oxidative ·OH and simultaneously dissociate the hydrogen atom in H2O, which greatly promoted the reduction of oxygen to H2O2. The photogenerated ·OH led to an efficiency enhancement for visible-light-response superhydrophilicity. Furthermore, photo-illumination in an onsite fixed-bed reactor could disinfect water at a rate of 66 L H2O m−2 per day.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Photocatalytic ·OH and H2O2 production over AuKPCN.
Fig. 2: Structural characterization of AuKPCN.
Fig. 3: Excitation properties of AuKPCN.
Fig. 4: Photocatalytic water oxidation and oxygen reduction on AuKPCN.
Fig. 5: Photocatalytic mechanism and stability of AuKPCN for water purification and disinfection.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Zhang, J., Mück-Lichtenfeld, C. & Studer, A. Photocatalytic phosphine-mediated water activation for radical hydrogenation. Nature 619, 506–513 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gligorovski, S., Strekowski, R., Barbati, S. & Vione, D. Environmental implications of hydroxyl radicals (·OH). Chem. Rev. 115, 13051–13092 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. (IMISDG6), U.-W.I.M.I.f.S. (UN-Water, 2021).

  4. Donde, O. O., Atoni, E., Muia, A. W. & Yillia, P. T. COVID-19 pandemic: water, sanitation and hygiene (WASH) as a critical control measure remains a major challenge in low-income countries. Water Res. 191, 116793 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Loeb, S. K. et al. The technology horizon for photocatalytic water treatment: sunrise or sunset? Environ. Sci. Technol. 53, 2937–2947 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Jeon, I., Ryberg, E. C., Alvarez, P. J. J. & Kim, J.-H. Technology assessment of solar disinfection for drinking water treatment. Nat. Sustain. 5, 801–808 (2022).

    Article  Google Scholar 

  7. Hou, H., Zeng, X. & Zhang, X. Production of hydrogen peroxide by photocatalytic processes. Angew. Chem. Int. Ed. 59, 17356–17376 (2020).

    Article  CAS  Google Scholar 

  8. Shiraishi, Y. et al. Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts. Angew. Chem. Int. Ed. 53, 13454–13459 (2014).

    Article  CAS  Google Scholar 

  9. Kim, H. et al. Spontaneous generation of H2O2 and hydroxyl radical through O2 reduction on copper phosphide under ambient aqueous condition. Environ. Sci. Technol. 53, 2918–2925 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Teng, Z. et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat. Catal. 4, 374–384 (2021).

    Article  CAS  Google Scholar 

  11. Shiraishi, Y. et al. Resorcinol–formaldehyde resins as metal-free semiconductor photocatalysts for solar-to-hydrogen peroxide energy conversion. Nat. Mater. 18, 985–993 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Parvulescu, V. I., Epron, F., Garcia, H. & Granger, P. Recent progress and prospects in catalytic water treatment. Chem. Rev. 122, 2981–3121 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Rahim Pouran, S., Abdul Aziz, A. R. & Wan Daud, W. M. A. Review on the main advances in photo-Fenton oxidation system for recalcitrant wastewaters. J. Ind. Eng. Chem. 21, 53–69 (2015).

    Article  CAS  Google Scholar 

  14. Shi, X., Back, S., Gill, T. M., Siahrostami, S. & Zheng, X. Electrochemical synthesis of H2O2 by two-electron water oxidation reaction. Chem 7, 38–63 (2021).

    Article  CAS  Google Scholar 

  15. Nosaka, Y. & Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 117, 11302–11336 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Kou, M. et al. Molecularly engineered covalent organic frameworks for hydrogen peroxide photosynthesis. Angew. Chem. Int. Ed. 61, e202200413 (2022).

    Article  CAS  Google Scholar 

  17. Wang, Q. & Domen, K. Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem. Rev. 120, 919–985 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Banerjee, T., Podjaski, F., Kröger, J., Biswal, B. P. & Lotsch, B. V. Polymer photocatalysts for solar-to-chemical energy conversion. Nat. Rev. Mater. 6, 168–190 (2021).

    Article  CAS  Google Scholar 

  19. Lau, V. W.-H. et al. Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites. Nat. Commun. 7, 12165 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schlomberg, H. et al. Structural Insights into poly(heptazine imides): a light-storing carbon nitride material for dark photocatalysis. Chem. Mater. 31, 7478–7486 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen, R. et al. Spatiotemporal imaging of charge transfer in photocatalyst particles. Nature 610, 296–301 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Repp, J., Meyer, G., Olsson, F. E. & Persson, M. Controlling the charge state of individual gold adatoms. Science 305, 493–495 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Savateev, A., Pronkin, S., Willinger, M. G., Antonietti, M. & Dontsova, D. Towards organic zeolites and inclusion catalysts: heptazine imide salts can exchange metal cations in the solid state. Chem. Asian J. 12, 1517–1522 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, X. et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Mesch, M. B. et al. Solving the hydrogen and lithium substructure of poly(triazine imide)/LiCl using NMR crystallography. Chem. Eur. J. 22, 16878–16890 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Wirnhier, E. et al. Poly(triazine imide) with intercalation of lithium and chloride ions [(C3N3)2(NHxLi1−x)3LiCl]: a crystalline 2D carbon nitride network. Chem. Eur. J. 17, 3213–3221 (2011).

  27. Gao, C. et al. Heterogeneous single-atom photocatalysts: fundamentals and applications. Chem. Rev. 120, 12175–12216 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Schwarzer, A., Saplinova, T. & Kroke, E. Tri-s-triazines (s-heptazines)—from a ‘mystery molecule’ to industrially relevant carbon nitride materials. Coord. Chem. Rev. 257, 2032–2062 (2013).

    Article  CAS  Google Scholar 

  29. Makowski, S. J., Schwarze, A., Schmidt, P. J. & Schnick, W. Rare-earth melonates LnC6N7(NCN)3·xH2O (Ln = La, Ce, Pr, Nd, Sm, Eu, Tb; x = 8–12): synthesis, crystal structures, thermal behavior, and photoluminescence properties of heptazine salts with trivalent cations. Eur. J. Inorg. Chem. 2012, 1832–1839 (2012).

    Article  CAS  Google Scholar 

  30. Wu, C. et al. Polarization engineering of covalent triazine frameworks for highly efficient photosynthesis of hydrogen peroxide from molecular oxygen and water. Adv. Mater. 34, 2110266 (2022).

    Article  CAS  Google Scholar 

  31. Jürgens, B. et al. Melem (2,5,8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies. J. Am. Chem. Soc. 125, 10288–10300 (2003).

    Article  PubMed  Google Scholar 

  32. Damodaran, K., Sanjayan, G. J., Rajamohanan, P. R., Ganapathy, S. & Ganesh, K. N. Solid state NMR of a molecular self-assembly: multinuclear approach to the cyanuric acid–melamine system. Org. Lett. 3, 1921–1924 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Lee, J. H. et al. Carbon dioxide mediated, reversible chemical hydrogen storage using a Pd nanocatalyst supported on mesoporous graphitic carbon nitride. J. Mater. Chem. A 2, 9490–9495 (2014).

    Article  CAS  Google Scholar 

  34. Wang, W. et al. Potassium-ion-assisted regeneration of active cyano groups in carbon nitride nanoribbons: visible-light-driven photocatalytic nitrogen reduction. Angew. Chem. Int. Ed. 58, 16644–16650 (2019).

    Article  CAS  Google Scholar 

  35. Zhang, J.-R. et al. Accurate K-edge X-ray photoelectron and absorption spectra of g-C3N4 nanosheets by first-principles simulations and reinterpretations. Phys. Chem. Chem. Phys. 21, 22819–22830 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Bridgeman, A. J., Cavigliasso, G., Ireland, L. R. & Rothery, J. The Mayer bond order as a tool in inorganic chemistry. J. Chem. Soc. Dalton Trans. https://doi.org/10.1039/B102094N (2001).

  37. Kessler, F. K. et al. Functional carbon nitride materials—design strategies for electrochemical devices. Nat. Rev. Mater. 2, 17030 (2017).

    Article  CAS  Google Scholar 

  38. Lin, L., Yu, Z. & Wang, X. Crystalline carbon nitride semiconductors for photocatalytic water splitting. Angew. Chem. Int. Ed. 58, 6164–6175 (2019).

    Article  CAS  Google Scholar 

  39. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Lin, L. et al. Molecular-level insights on the reactive facet of carbon nitride single crystals photocatalysing overall water splitting. Nat. Catal. 3, 649–655 (2020).

    Article  CAS  Google Scholar 

  41. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article  PubMed  Google Scholar 

  42. Bredas, J.-L. Mind the gap! Mater. Horiz. 1, 17–19 (2014).

    Article  CAS  Google Scholar 

  43. Ye, J.-Y., Jiang, Y.-X., Sheng, T. & Sun, S.-G. In-situ FTIR spectroscopic studies of electrocatalytic reactions and processes. Nano Energy 29, 414–427 (2016).

    Article  CAS  Google Scholar 

  44. Beyhan, S., Uosaki, K., Feliu, J. M. & Herrero, E. Electrochemical and in situ FTIR studies of ethanol adsorption and oxidation on gold single crystal electrodes in alkaline media. J. Electroanal. Chem. 707, 89–94 (2013).

    Article  CAS  Google Scholar 

  45. Hisatomi, T., Maeda, K., Takanabe, K., Kubota, J. & Domen, K. Aspects of the water splitting mechanism on (Ga1−xZnx)(N1−xOx) photocatalyst modified with Rh2−yCryO3 cocatalyst. J. Phys. Chem. C 113, 21458–21466 (2009).

  46. Jones, R. D., Summerville, D. A. & Basolo, F. Synthetic oxygen carriers related to biological systems. Chem. Rev. 79, 139–179 (1979).

    Article  CAS  Google Scholar 

  47. Nakamura, R. & Nakato, Y. Primary intermediates of oxygen photoevolution reaction on TiO2 (rutile) particles, revealed by in situ ftir absorption and photoluminescence measurements. J. Am. Chem. Soc. 126, 1290–1298 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Xiao, J., Xie, Y., Rabeah, J., Brückner, A. & Cao, H. Visible-light photocatalytic ozonation using graphitic C3N4 catalysts: a hydroxyl radical manufacturer for wastewater treatment. Acc. Chem. Res. 53, 1024–1033 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Murakami, N., Ono, A., Nakamura, M., Tsubota, T. & Ohno, T. Development of a visible-light-responsive rutile rod by site-selective modification of iron(III) ion on {111} exposed crystal faces. Appl. Catal. B 97, 115–119 (2010).

    Article  CAS  Google Scholar 

  50. Liu, C. et al. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light. Nat. Nanotechnol. 11, 1098–1104 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Sontakke, S., Modak, J. & Madras, G. Effect of inorganic ions, H2O2 and pH on the photocatalytic inactivation of Escherichia coli with silver impregnated combustion synthesized TiO2 catalyst. Appl. Catal. B: Environ. 106, 453–459 (2011).

    Article  CAS  Google Scholar 

  52. Teng, Z. et al. Edge-functionalized g-C3N4 nanosheets as a highly efficient metal-free photocatalyst for safe drinking water. Chem 5, 664–680 (2019).

    Article  CAS  Google Scholar 

  53. Varnagiris, S. et al. Floating TiO2 photocatalyst for efficient inactivation of E. coli and decomposition of methylene blue solution. Sci. Total Environ. 720, 137600 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. De Vietro, N. et al. Photocatalytic inactivation of Escherichia coli bacteria in water using low pressure plasma deposited TiO2 cellulose fabric. Photochem. Photobiol. Sci. 18, 2248–2258 (2019).

    Article  PubMed  Google Scholar 

  55. Liu, J. et al. Molybdenum sulfide Co-catalytic Fenton reaction for rapid and efficient inactivation of Escherichia coli. Water Res. 145, 312–320 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Giannakis, S. et al. Ultrasound enhancement of near-neutral photo-Fenton for effective E. coli inactivation in wastewater. Ultrason. Sonochem. 22, 515–526 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Murphy, H. M., Payne, S. J. & Gagnon, G. A. Sequential UV- and chlorine-based disinfection to mitigate Escherichia coli in drinking water biofilms. Water Res. 42, 2083–2092 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Xiong, A. et al. Fabrication of photocatalyst panels and the factors determining their activity for water splitting. Catal. Sci. Technol. 4, 325–328 (2014).

    Article  CAS  Google Scholar 

  59. Oturan, M. A. & Pinson, J. Hydroxylation by electrochemically generated OH.bul. radicals. Mono- and polyhydroxylation of benzoic acid: products and isomer distribution. J. Phys. Chem. 99, 13948–13954 (1995).

    Article  CAS  Google Scholar 

  60. Jen, J.-F., Leu, M.-F. & Yang, T. C. Determination of hydroxyl radicals in an advanced oxidation process with salicylic acid trapping and liquid chromatography. J. Chromatogr. A 796, 283–288 (1998).

    Article  CAS  Google Scholar 

  61. Ghuman, K. K. et al. Photoexcited surface frustrated Lewis pairs for heterogeneous photocatalytic CO2 reduction. J. Am. Chem. Soc. 138, 1206–1214 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of City University of Kong Hong startup fund (9020003, B.L.), ITF–RTH - Global STEM Professorship (9446006, B.L.), Mitsubishi Chemical Corporation, JSPS Grant-in-Aid for Scientific Research (B, no. 20H02847, T.O.), The National Key Research and Development Program of China (2021YFA1600800, C.S.), Grant-in-Aid for JSPS Fellows (DC2, 20J13064), Project National Natural Science Foundation of China (22372102, C.S.; 21805191, Q.Z.; 21972094, C.S.), the Guangdong Basic and Applied Basic Research Foundation (2024A1515010976 and 2020A1515010982), Shenzhen Science and Technology Program (RCJC20200714114434086, C.S.), and Shenzhen Peacock Plan (202108022524B, Q.Z.). Research Team Cultivation Program of Shenzhen University (2023QNT013, C.S.). National Science and Technology Council (NSTC, 110-2112-M-213-019-MY3). The authors thank J. Xiao, T. Hisatomi and K. Domen from Shinshu University for their help in ·OH detection and D2O experiments. The authors also thank X. Cai (Nanyang Technological University), C. Chen (King Abdullah University of Science and Technology), Y. Han (King Abdullah University of Science and Technology), L. Gu (Institute of Physics, Chinese Academy of Sciences), R. Luo (University of Chinese Academy of Sciences), X. Peng (University of Chinese Academy of Sciences), W. Zhou (University of Chinese Academy of Sciences), K. Niu (Southern University of Science and Technology), W. Wang (Southern University of Science and Technology), J. Lin (Southern University of Science and Technology) and, especially, N. Jian (Electron Microscope Center of the Shenzhen University) for their help in HR-TEM measurements. The authors thank X. Zheng (National Synchrotron Radiation Laboratory, University of Science and Technology of China) for his help in analysing data of soft X-ray absorption.

Author information

Authors and Affiliations

Authors

Contributions

Z.T., T.O. and B.L. conceptualized the project. T.O., C.S. and B.L. supervised the project. Z.T. synthesized the catalysts, conducted the catalytic tests and the related data processing, and performed materials characterization and analysis with the help of H.Y., W.C., Q.Z., Y.-R.L., T.-S.C., S.L. and J.D. K.K. and A.Y. conducted transient absorption spectroscopy measurements. C.W., Z.Z., P.C. and Z.T. designed and prepared the practical devices for solar water disinfection. S.H. and Z.T. prepared the self-cleaning nanocoating. Z.T. performed the theoretical study. Z.T. and B.L. wrote the manuscript with support from all authors.

Corresponding authors

Correspondence to Chenliang Su, Teruhisa Ohno or Bin Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Xinchen Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 High-resolution XPS spectra to determine the surface chemical states of Au.

a, Au (4 f7/2 and 4 f5/2) spectra in AuPCN and AuKPCN. b, Au (4 f7/2) spectrum in Au foil as a reference.

Source data

Extended Data Fig. 2 Solid state NMR analysis of PCN.

a, Groups of C and N atoms marked with symbols in PCN. b, 13C solid-state NMR spectrum of PCN. Inset shows the enlarged spectrum. c, Calculated 13C NMR chemical shifts for a melon model (neutral). d, 15N solid-state NMR spectrum of PCN. Inset shows the enlarged spectrum. e, Calculated 15N NMR chemical shifts for a melon model (neutral).

Source data

Extended Data Fig. 3 Solid state NMR analysis of KPCN.

a, Groups of C and N atoms marked with symbols in KPCN. b, 13C solid-state NMR spectrum of KPCN. Inset shows the enlarged spectrum. c, Calculated 13C NMR chemical shifts for a K-PHI model (neutral). d, 15N solid-state NMR spectrum of KPCN. Inset shows the enlarged spectrum. e, Calculated 15N NMR chemical shifts for a K-PHI model (neutral).

Source data

Extended Data Fig. 4 Solid state NMR analysis of AuKPCN.

a, Groups of C and N atoms marked with symbols in AuKPCN. b, 13C solid-state NMR spectrum of AuKPCN. Inset shows the enlarged spectrum. c, Calculated 13C NMR chemical shifts for Au on K-PHI framework (neutral). d, 15N solid-state NMR spectrum of AuKPCN. Inset shows the enlarged spectrum. e, Calculated 15N NMR chemical shifts for Au on a K-PHI model (neutral). The simulation of Au was conducted at SDD level.

Source data

Extended Data Fig. 5 In-situ XPS spectra for AuPCN and AuKPCN recorded in dark and under visible light illumination.

a, High-resolution XPS spectra of AuPCN: Au 4f7/2 and Au 4f5/2 under light irradiation for 5 min (up) and 10 min (down). b, High-resolution XPS spectra of AuKPCN: Au 4f7/2 and Au 4f5/2 under light irradiation for 5 min (up) and 10 min (down). c, Chemical state change in AuKPCN and AuPCN during the In-situ XPS experiment.

Source data

Extended Data Fig. 6 Surface hydrophilicity evolution.

a-d, Contact angle images of PCN (a), KPCN (b), AuPCN (c) and AuKPCN (d) under light irradiation. e-f, The changing tendency of contact angles. e-f, Changes in contact angle measurements with illumination for (e) polymeric carbon nitride samples and (f) commercialized TiO2 (Dr. Ohno). Inset, Contact angle measurements for commercialized TiO2 (Dr. Ohno) under short light irradiation times.

Source data

Supplementary information

Supplementary Information

Supplementary Scheme 1, Figs. 1–56, Tables 1–17 and Notes 1–11.

Supplementary Video 1

Hydrophobic PCN.

Supplementary Video 2

Hydrophobic AuPCN.

Supplementary Video 3

Hydrophobic KPCN.

Supplementary Video 4

Superhydrophilic AuKPCN.

Supplementary Video 5

Animations for vibration of simulated FTIR.

Supplementary Data

Source data of supplementary figures.

Source data

Source Data Fig. 1

Source data of Fig. 1.

Source Data Fig. 2

Source data of Fig. 2.

Source Data Fig. 3

Source data of Fig. 3.

Source Data Fig. 4

Source data of Fig. 4.

Source Data Fig. 5

Source data of Fig. 5.

Source Data Extended Data Fig. 1

Source data of Extended Data Fig. 1.

Source Data Extended Data Fig. 2

Source data of Extended Data Fig. 2.

Source Data Extended Data Fig. 3

Source data of Extended Data Fig. 3.

Source Data Extended Data Fig. 4

Source data of Extended Data Fig. 4.

Source Data Extended Data Fig. 5

Source data of Extended Data Fig. 5.

Source Data Extended Data Fig. 6

Source data of Extended Data Fig. 6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, Z., Yang, H., Zhang, Q. et al. Atomically dispersed low-valent Au boosts photocatalytic hydroxyl radical production. Nat. Chem. (2024). https://doi.org/10.1038/s41557-024-01553-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-024-01553-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing