Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Repurposing of halogenated organic pollutants via alkyl bromide-catalysed transfer chlorination

Abstract

Halogenated organic pollutants (HOPs) are causing a significant environmental and human health crisis due to their high levels of toxicity, persistence and bioaccumulation. Urgent action is required to develop effective approaches for the reduction and reuse of HOPs. Whereas current strategies focus primarily on the degradation of HOPs, repurposing them is an alternative approach, albeit a challenging task. Here we discover that alkyl bromide can act as a catalyst for the transfer of chlorine using alkyl chloride as the chlorine source. We demonstrate that this approach has a wide substrate scope, and we successfully apply it to reuse HOPs that include dichlorodiphenyltrichloroethane, hexabromocyclododecane, chlorinated paraffins, chloromethyl polystyrene and poly(vinyl chloride) (PVC). Moreover, we show that the synthesis of essential non-steroidal anti-inflammatory drugs can be achieved using PVC and hexabromocyclododecane, and we demonstrate that PVC waste can be used directly as a chlorinating agent. Overall, this methodology offers a promising strategy for repurposing HOPs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HOPs and their repurposing.
Fig. 2: Substrate scope.
Fig. 3: Mechanistic studies and proposed mechanism.
Fig. 4: HOP valorization.
Fig. 5: Using HOPs to synthesize non-steroidal anti-inflammatory drugs.
Fig. 6: Repurposing of waste PVC through the transfer chlorination reaction.

Similar content being viewed by others

Data availability

Relevant data are available within the Article and its Supplementary Information. Raw TGA and DSC data are available via Figshare at https://doi.org/10.6084/m9.figshare.25406248 (ref. 51). Source data are provided with this paper.

References

  1. Alonso, F., Beletskaya, I. P. & Yus, M. Metal-mediated reductive hydrodehalogenation of organic halides. Chem. Rev. 102, 4009–4091 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, X. et al. A review of the transplacental transfer of persistent halogenated organic pollutants: transfer characteristics, influential factors, and mechanisms. Environ. Int. 146, 106224 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Mansouri, A. et al. The environmental issues of DDT pollution and bioremediation: a multidisciplinary review. Appl. Biochem. Biotechnol. 181, 309–339 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Dong, X., Roeckl, J. L., Waldvogel, S. R. & Morandi, B. Merging shuttle reactions and paired electrolysis for reversible vicinal dihalogenations. Science 371, 507–514 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Vijgen, J. et al. Hexachlorocyclohexane (HCH) as new Stockholm Convention POPs—a global perspective on the management of Lindane and its waste isomers. Environ. Sci. Pollut. Res. Int. 18, 152–162 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, Y. et al. Transport of hexabromocyclododecane (HBCD) into the soil, water and sediment from a large producer in China. Sci. Total Environ. 610–611, 94–100 (2018).

    Article  PubMed  Google Scholar 

  7. Yu, X., McPhedran, K. N. & Huang, R. Chlorinated paraffins: a review of sample preparation, instrumental analysis, and occurrence and distribution in food samples. Environ. Pollut. 318, 120875 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Ellis, L. D. et al. Chemical and biological catalysis for plastics recycling and upcycling. Nat. Catal. 4, 539–556 (2021).

    Article  CAS  Google Scholar 

  9. Jugder, B.-E., Ertan, H., Lee, M., Manefield, M. & Marquis, C. P. Reductive dehalogenases come of age in biological destruction of organohalides. Trends Biotechnol. 33, 595–610 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Chiron, S., Fernandez-Alba, A., Rodriguez, A. & Garcia-Calvo, E. Pesticide chemical oxidation: state-of-the-art. Water Res. 34, 366–377 (2000).

    Article  CAS  Google Scholar 

  11. Tomanova, M., Jedinak, L. & Cankar, P. Reductive dehalogenation and dehalogenative sulfonation of phenols and heteroaromatics with sodium sulfite in an aqueous medium. Green Chem. 21, 2621–2628 (2019).

    Article  CAS  Google Scholar 

  12. Huang, A. et al. Efficient oxidative debromination of decabromodiphenyl ether by TiO2-mediated photocatalysis in aqueous environment. Environ. Sci. Technol. 47, 518–525 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, Y., Wei, Y., Song, W., Chen, C. & Zhao, J. Photocatalytic hydrodehalogenation for the removal of halogenated aromatic contaminants. ChemCatChem 11, 258–268 (2019).

    Article  CAS  Google Scholar 

  14. Martin, E. T., McGuire, C. M., Mubarak, M. S. & Peters, D. G. Electroreductive remediation of halogenated environmental pollutants. Chem. Rev. 116, 15198–15234 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Barontini, F., Cozzani, V., Cuzzola, A. & Petarca, L. Investigation of hexabromocyclododecane thermal degradation pathways by gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 15, 690–698 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Cagnetta, G., Robertson, J., Huang, J., Zhang, K. & Yu, G. Mechanochemical destruction of halogenated organic pollutants: a critical review. J. Hazard. Mater. 313, 85–102 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Garcia, J. M. & Robertson, M. L. The future of plastics recycling. Science 358, 870–872 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Korley, L. T. J., Epps, T. H. III, Helms, B. A. & Ryan, A. J. Toward polymer upcycling—adding value and tackling circularity. Science 373, 66–69 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Podgorsek, A., Zupan, M. & Iskra, J. Oxidative halogenation with ‘green’ oxidants: oxygen and hydrogen peroxide. Angew. Chem. Int. Ed. 48, 8424–8450 (2009).

    Article  CAS  Google Scholar 

  20. Rodriguez, R. A. et al. Palau′chlor: a practical and reactive chlorinating reagent. J. Am. Chem. Soc. 136, 6908–6911 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hering, T., Muehldorf, B., Wolf, R. & Koenig, B. Halogenase-inspired oxidative chlorination using flavin photocatalysis. Angew. Chem. Int. Ed. 55, 5342–5345 (2016).

    Article  CAS  Google Scholar 

  22. Xiong, X. & Yeung, Y.-Y. Highly ortho-selective chlorination of anilines using a secondary ammonium salt organocatalyst. Angew. Chem. Int. Ed. 55, 16101–16105 (2016).

    Article  CAS  Google Scholar 

  23. Song, S. et al. DMSO-catalysed late-stage chlorination of (hetero)arenes. Nat. Catal. 3, 107–115 (2019).

    Article  Google Scholar 

  24. Wang, W. et al. Oxoammonium salts are catalysing efficient and selective halogenation of olefins, alkynes and aromatics. Nat. Commun. 12, 3873 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kleoff, M., Vossnacker, P. & Riedel, S. The rise of trichlorides enabling an improved chlorine technology. Angew. Chem. Int. Ed. 62, e202216586 (2023).

    Article  CAS  Google Scholar 

  26. Brummond, K. M. & Gesenberg, K. D. α-Chlorination of ketones using p-toluenesulfonyl chloride. Tetrahedron Lett. 40, 2231–2234 (1999).

    Article  CAS  Google Scholar 

  27. Cresswell, A. J., Eey, S. T. C. & Denmark, S. E. Catalytic, stereospecific syn-dichlorination of alkenes. Nat. Chem. 7, 146–152 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  28. Xiang, J. C. et al. Switching over of the chemoselectivity: I2–DMSO-enabled α,α-dichlorination of functionalized methyl ketones. J. Org. Chem. 87, 15101–15113 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Denmark, S. E., Kuester, W. E. & Burk, M. T. Catalytic, asymmetric halofunctionalization of alkenes—a critical perspective. Angew. Chem. Int. Ed. 51, 10938–10953 (2012).

    Article  CAS  Google Scholar 

  30. Yu, P., Bismuto, A. & Morandi, B. Iridium-catalyzed hydrochlorination and hydrobromination of alkynes by shuttle catalysis. Angew. Chem. Int. Ed. 59, 2904–2910 (2020).

    Article  CAS  Google Scholar 

  31. Weidkamp, A. J. & Oestreich, M. Metal-free transfer hydrochlorination of internal C–C triple bonds with a bicyclo[3.1.0]hexane-based surrogate releasing two molecules of hydrogen chloride. Chem. Commun. 58, 973–976 (2022).

    Article  CAS  Google Scholar 

  32. Levitre, G., Granados, A. & Molander, G. A. Sustainable photoinduced decarboxylative chlorination mediated by halogen atom transfer. Green Chem. 25, 560–565 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liang, Y., Lin, F., Adeli, Y., Jin, R. & Jiao, N. Efficient electrocatalysis for the preparation of (hetero)aryl chlorides and vinyl chloride with 1,2-dichloroethane. Angew. Chem. Int. Ed. 58, 4566–4570 (2019).

    Article  CAS  Google Scholar 

  34. Ashikari, Y., Nokami, T. & Yoshida, J.-I. Oxidative hydroxylation mediated by alkoxysulfonium ions. Org. Lett. 14, 938–941 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Song, S. et al. From simple organobromides or olefins to highly value-added bromohydrins: a versatile performance of dimethyl sulfoxide. Green Chem. 17, 2727–2731 (2015).

    Article  CAS  Google Scholar 

  36. Floyd, M. B., Du, M. T., Fabio, P. F., Jacob, L. A. & Johnson, B. D. The oxidation of acetophenones to arylglyoxals with aqueous hydrobromic acid in dimethyl sulfoxide. J. Org. Chem. 50, 5022–5027 (1985).

    Article  CAS  Google Scholar 

  37. Song, S., Sun, X., Li, X., Yuan, Y. & Jiao, N. Efficient and practical oxidative bromination and iodination of arenes and heteroarenes with DMSO and hydrogen halide: a mild protocol for late-stage functionalization. Org. Lett. 17, 2886–2889 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Marvin, C. H. et al. Hexabromocyclododecane: current understanding of chemistry, environmental fate and toxicology and implications for global management. Environ. Sci. Technol. 45, 8613–8623 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Darnerud, P. O. & Bergman, A. Critical review on disposition of chlorinated paraffins in animals and humans. Environ. Int. 163, 107195 (2022).

    Article  PubMed  Google Scholar 

  40. Zhang, R. et al. Computational study on the detoxifying mechanism of DDT metabolized by cytochrome P450 enzymes. J. Hazard. Mater. 414, 125457 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Fagnani, D. E., Kim, D., Camarero, S. I., Alfaro, J. F. & McNeil, A. J. Using waste poly(vinyl chloride) to synthesize chloroarenes by plasticizer-mediated electro(de)chlorination. Nat. Chem. 15, 222–229 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Xiu, F.-R., Tan, X., Qi, Y. & Wang, M. Treatment of DEHP-rich PVC waste in subcritical urine wastewater: efficient dechlorination, denitrification, plasticizer decomposition, and preparation of high-purity phthalic acid crystals. J. Hazard. Mater. 441, 129820 (2023).

    Article  CAS  PubMed  Google Scholar 

  43. Brogden, R. N., Heel, R. C., Speight, T. M. & Avery, G. S. Naproxen up to date: a review of its pharmacological properties and therapeutic efficacy and use in rheumatic diseases and pain states. Drugs 18, 241–277 (1979).

    Article  CAS  PubMed  Google Scholar 

  44. Rainsford, K. D. Ibuprofen: pharmacology, efficacy and safety. Inflammopharmacology 17, 275–342 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Perico, N., Cortinovis, M., Suter, F. & Remuzzi, G. Home as the new frontier for the treatment of COVID-19: the case for anti-inflammatory agents. Lancet Infect. Dis. 23, e22–e33 (2023).

    Article  CAS  PubMed  Google Scholar 

  46. Zhao, H. et al. Prevalence of NSAID use among people with COVID-19 and the association with COVID-19-related outcomes: systematic review and meta-analysis. Br. J. Clin. Pharmacol. 88, 5113–5127 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Ha, M.-W. & Paek, S.-M. Recent advances in the synthesis of ibuprofen and naproxen. Molecules 26, 4792 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Piccolo, O., Spreafico, F., Visentin, G. & Valoti, E. Zinc salt catalyzed rearrangement of acetals of optically active aryl 1-chloroethyl ketones: synthesis of optically active 2-arylpropionic acids and esters. J. Org. Chem. 52, 10–14 (1987).

    Article  CAS  Google Scholar 

  49. Pollmeier, M., Toulemonde, C., Fleishman, C. & Hanson, P. D. Clinical evaluation of firocoxib and carprofen for the treatment of dogs with osteoarthritis. Vet. Rec. 159, 547–551 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Latli, B. et al. Synthesis of stable isotope-labelled firocoxib. J. Labelled Comp. Radiopharm. 63, 386–392 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Liu, H. TGA and DSC data. Figshare https://doi.org/10.6084/m9.figshare.25406248 (2024).

Download references

Acknowledgements

We thank Z.-S. Ye (Dalian University of Technology) for helpful discussions and manuscript revisions. Financial support from the National Natural Science Foundation of China (22071239 to Q.-A.C.) and Dalian Outstanding Young Scientific Talent (2020RJ05 to Q.-A.C.) is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Q.-A.C. conceived and supervised the project. Q.-A.C. and H.L. designed the experiments. H.L. performed the experiments and analysed the data. Y.-K.M., Y.L. and X.-Y.W. assisted with the materials synthesis. D.-W.J. and C.-H.L. reviewed and edited the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Qing-An Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Rongbiao Tong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Kinetic studies.

(a) Kinetic studies of bromination reactions indicate that primary and secondary bromides undergo dehalogenation via substitution reactions, whereas tertiary bromides undergo dehalogenation through elimination reactions. (b) The trends of kinetic curves were similar to those of bromination reactions, indicating that primary and secondary chlorides undergo dehalogenation via substitution reactions, whereas tertiary chlorides undergo dehalogenation through elimination reactions.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–15, Tables 1–30, Methods, Data and Discussion.

Source data

Source Data Extended Data Fig. 1

Numerical data underlying the plots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Ji, DW., Mei, YK. et al. Repurposing of halogenated organic pollutants via alkyl bromide-catalysed transfer chlorination. Nat. Chem. (2024). https://doi.org/10.1038/s41557-024-01551-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-024-01551-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing