Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Integrated chemoenzymatic synthesis of a comprehensive sulfated ganglioside glycan library to decipher functional sulfoglycomics and sialoglycomics

Abstract

Ganglioside glycans are ubiquitous and complex biomolecules that are involved in a wide range of biological functions and disease processes. Variations in sialylation and sulfation render the structural complexity and diversity of ganglioside glycans, and influence protein–carbohydrate interactions. Structural and functional insights into the biological roles of these glycans are impeded due to the limited accessibility of well-defined structures. Here we report an integrated chemoenzymatic strategy for expeditious and systematic synthesis of a comprehensive 65-membered ganglioside glycan library covering all possible patterns of sulfation and sialylation. This strategy relies on the streamlined modular assembly of three common sialylated precursors by highly stereoselective iterative sialylation, modular site-specific sulfation through flexible orthogonal protecting-group manipulations and enzymatic-catalysed diversification using three sialyltransferase modules and a galactosidase module. These diverse ganglioside glycans enable exploration into their structure–function relationships using high-throughput glycan microarray technology, which reveals that different patterns of sulfation and sialylation on these glycans mediate their unique binding specificities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthetic sulfated and non-sulfated ganglioside glycan library.
Fig. 2: Modular chemical synthesis of versatile saccharide precursors.
Fig. 3: Divergent chemoenzymatic modular synthesis of 0-series sulfated ganglioside glycans.
Fig. 4: Divergent chemoenzymatic modular synthesis of a-, b- and c-series sulfated ganglioside glycans.
Fig. 5: Mapping the binding profiles of Siglecs towards sulfated and non-sulfated ganglioside glycans.
Fig. 6: Probing binding specificities of virus proteins and bacterial toxins towards ganglioside glycans.

Similar content being viewed by others

Data availability

All data related to this study are provided in the main text and Supplementary Information. Uniprot accessions referenced in the Supplementary Information are publicly available at https://www.uniprot.org/. Source data are provided with this paper.

References

  1. Fishman, P. H. & Brady, R. O. Biosynthesis and function of gangliosides. Science 194, 906–915 (1976).

    Article  CAS  PubMed  Google Scholar 

  2. Cutillo, G., Saariaho, A.-H. & Meri, S. Physiology of gangliosides and the role of antiganglioside antibodies in human diseases. Cell. Mol. Immunol. 17, 313–322 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lopez, P. H. H. & Schnaar, R. L. Gangliosides in cell recognition and membrane protein regulation. Curr. Opin. Struct. Biol. 19, 549–557 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Groux-Degroote, S., Guérardel, Y. & Delannoy, P. Gangliosides: structures, biosynthesis, analysis, and roles in cancer. ChemBioChem 18, 1146–1154 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Li, T. et al. Chemoenzymatic synthesis of Campylobacter jejuni lipo-oligosaccharide core domains to examine Guillain–Barré syndrome serum antibody specificities. J. Am. Chem. Soc. 142, 19611–19621 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Smith, B. A. H. & Bertozzi, C. R. The clinical impact of glycobiology: targeting selectins, Siglecs and mammalian glycans. Nat. Rev. Drug Discov. 20, 217–243 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Macauley, M. S., Crocker, P. R. & Paulson, J. C. Siglec-mediated regulation of immune cell function in disease. Nat. Rev. Immunol. 14, 653–666 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schnaar, R. L. Gangliosides as Siglec ligands. Glycoconj. J. 40, 159–167 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nguyen, L. et al. Sialic acid-containing glycolipids mediate binding and viral entry of SARS-CoV-2. Nat. Chem. Biol. 18, 81–90 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Poole, J., Day, C. J., von Itzstein, M., Paton, J. C. & Jennings, M. P. Glycointeractions in bacterial pathogenesis. Nat. Rev. Microbiol. 16, 440–452 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Ishizuka, I. Chemistry and functional distribution of sulfoglycolipids. Prog. Lipid Res. 36, 245–319 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Sandhoff, R. et al. Kidney sulfatides in mouse models of inherited glycosphingolipid disorders: determination by nano-electrospray ionization tandem mass spectrometry. J. Biol. Chem. 277, 20386–20398 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Niimura, Y. & Ishizuka, I. Isolation and identification of nine sulfated glycosphingolipids containing two unique sulfated gangliosides from the African green monkey kidney cells, Verots S3, and their possible metabolic pathways. Glycobiology 16, 729–735 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Kobayashi, T. et al. Hepatocyte growth factor specifically binds to sulfoglycolipids. J. Biol. Chem. 269, 9817–9821 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Hiraiwa, N. et al. Accumulation of highly acidic sulfated glycosphingolipids in human hepatocellular carcinoma defined by a series of monoclonal antibodies. Cancer Res. 50, 2917–2928 (1990).

    CAS  PubMed  Google Scholar 

  16. Collins, B. E. et al. Enhanced binding of the neural siglecs, myelin-associated glycoprotein and Schwann cell myelin protein, to Chol-1 (α-series) gangliosides and novel sulfated Chol-1 analogs. J. Biol. Chem. 274, 37637–37643 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Solís, D. et al. A guide into glycosciences: how chemistry, biochemistry and biology cooperate to crack the sugar code. Biochim. Biophys. Acta Gen. Subj. 1850, 186–235 (2015).

    Article  Google Scholar 

  18. Wisnovsky, S. & Bertozzi, C. R. Reading the glyco-code: new approaches to studying protein–carbohydrate interactions. Curr. Opin. Struct. Biol. 75, 102395 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vyas, A. A. et al. Gangliosides are functional nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration. Proc. Natl Acad. Sci. USA 99, 8412–8417 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yamaji, T., Teranishi, T., Alphey, M. S., Crocker, P. R. & Hashimoto, Y. A small region of the natural killer cell receptor, Siglec-7, is responsible for its preferred binding to α2,8-disialyl and branched α2,6-sialyl residues. A comparison with Siglec-9. J. Biol. Chem. 277, 6324–6332 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Campanero-Rhodes, M. A. et al. Carbohydrate microarrays reveal sulphation as a modulator of siglec binding. Biochem. Biophys. Res. Commun. 344, 1141–1146 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Ibarlucea-Benitez, I., Weitzenfeld, P., Smith, P. & Ravetch, J. V. Siglecs-7/9 function as inhibitory immune checkpoints in vivo and can be targeted to enhance therapeutic antitumor immunity. Proc. Natl Acad. Sci. USA 118, e2107424118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, W. et al. Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein. Proc. Natl Acad. Sci. USA 114, E8508–E8517 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zuverink, M. & Barbieri, J. T. Protein toxins that utilize gangliosides as host receptors. Prog. Mol. Biol. Transl. Sci. 156, 325–354 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Seeberger, P. H. & Werz, D. B. Synthesis and medical applications of oligosaccharides. Nature 446, 1046–1051 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Shivatare, S. S., Shivatare, V. S. & Wong, C.-H. Glycoconjugates: synthesis, functional studies, and therapeutic developments. Chem. Rev. 122, 15603–15671 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guo, Z. The structural diversity of natural glycosphingolipids (GSLs). J. Carbohydr. Chem. 41, 63–154 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gray, C. J. et al. Advancing solutions to the carbohydrate sequencing challenge. J. Am. Chem. Soc. 141, 14463–14479 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Boltje, T. J., Buskas, T. & Boons, G.-J. Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research. Nat. Chem. 1, 611–622 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schmaltz, R. M., Hanson, S. R. & Wong, C.-H. Enzymes in the synthesis of glycoconjugates. Chem. Rev. 111, 4259–4307 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Vibhute, A. M., Komura, N., Tanaka, H.-N., Imamura, A. & Ando, H. Advanced chemical methods for stereoselective sialylation and their applications in sialoglycan syntheses. Chem. Rec. 21, 3194–3223 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Tanaka, H., Nishiura, Y. & Takahashi, T. An efficient convergent synthesis of GP1c ganglioside epitope. J. Am. Chem. Soc. 130, 17244–17245 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Komori, T., Imamura, A., Ando, H., Ishida, H. & Kiso, M. Study on systematizing the synthesis of the a-series ganglioside glycans GT1a, GD1a, and GM1 using the newly developed N-Troc-protected GM3 and GalN intermediates. Carbohydr. Res. 344, 1453–1463 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Crich, D. & Li, W. α-Selective sialylations at –78 °C in nitrile solvents with a 1-adamantanyl thiosialoside. J. Org. Chem. 72, 7794–7797 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hsu, C.-H. et al. Highly alpha-selective sialyl phosphate donors for efficient preparation of natural sialosides. Chem. Eur. J. 16, 1754–1760 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Takahashi, T., Tsukamoto, H. & Yamada, H. A new method for the formation of the α-glycoside bond of sialyl conjugates based on long-range participation. Tetrahedron Lett. 38, 8223–8226 (1997).

    Article  CAS  Google Scholar 

  37. Haberman, J. M. & Gin, D. Y. A new C(1)-auxiliary for anomeric stereocontrol in the synthesis of α-sialyl glycosides. Org. Lett. 3, 1665–1668 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Ito, Y. & Ogawa, T. An efficient approach to streoselective glycosylation of N-acetylneuraminic acid: used of phenylselenyl group as a stereocontrolling auxillary. Tetrahedron Lett. 28, 6221–6224 (1987).

    Article  CAS  Google Scholar 

  39. Castro-Palomino, J. C., Tsvetkov, Y. E. & Schmidt, R. R. 8-O-Sialylation of neuraminic acid. J. Am. Chem. Soc. 120, 5434–5440 (1998).

    Article  CAS  Google Scholar 

  40. Tanaka, H., Nishiura, Y. & Takahashi, T. Stereoselective synthesis of oligo-α-(2,8)-sialic acids. J. Am. Chem. Soc. 128, 7124–7125 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Chen, J. et al. 1-Picolinyl-5-azido thiosialosides: versatile donors for the stereoselective construction of sialyl linkages. Angew. Chem. Int. Ed. 58, 17000–17008 (2019).

    Article  CAS  Google Scholar 

  42. Komura, N. et al. Constrained sialic acid donors enable selective synthesis of α-glycosides. Science 364, 677–680 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Imamura, A., Ando, H., Ishida, H. & Kiso, M. Ganglioside GQ1b: efficient total synthesis and the expansion to synthetic derivatives to elucidate its biological roles. J. Org. Chem. 74, 3009–3023 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Li, Q. et al. Synthesis of a spacer-armed disulfated tetrasaccharide of SB1a, a carbohydrate hapten associated with human hepatocellular carcinoma. Carbohydr. Res. 337, 1929–1934 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Ito, H. et al. Systematic synthesis and MAG-binding activity of novel sulfated GM1b analogues as mimics of Chol-1 (α-series) gangliosides: highly active ligands for neural siglecs. Carbohydr. Res. 338, 1621–1639 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Hara-Yokoyama, M. et al. Novel sulfated gangliosides, high-affinity ligands for neural siglecs, inhibit NADase activity of leukocyte cell surface antigen CD38. Bioorg. Med. Chem. Lett. 13, 3441–3445 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Hirose, H. et al. Total syntheses of disulphated glycosphingolipid SB1a and the related monosulphated SM1a. Org. Biomol. Chem. 13, 11105–11117 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Na, L., Li, R. & Chen, X. Recent progress in synthesis of carbohydrates with sugar nucleotide-dependent glycosyltransferases. Curr. Opin. Chem. Biol. 61, 81–95 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Yu, H. et al. Sequential one-pot multienzyme chemoenzymatic synthesis of glycosphingolipid glycans. J. Org. Chem. 81, 10809–10824 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang, X. et al. One-pot multienzyme (OPME) chemoenzymatic synthesis of brain ganglioside glycans with human ST3GAL II expressed in E. coli. ChemCatChem 14, e202101498 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Meng, X. et al. Regioselective chemoenzymatic synthesis of ganglioside disialyl tetrasaccharide epitopes. J. Am. Chem. Soc. 136, 5205–5208 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li, T. et al. An automated platform for the enzyme-mediated assembly of complex oligosaccharides. Nat. Chem. 11, 229–236 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Blixt, O. et al. Chemoenzymatic synthesis of 2-azidoethyl-ganglio-oligosaccharides GD3, GT3, GM2, GD2, GT2, GM1, and GD1a. Carbohydr. Res. 340, 1963–1972 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Li, Q., Jaiswal, M., Rohokale, R. S. & Guo, Z. A diversity-oriented strategy for chemoenzymatic synthesis of glycosphingolipids and related derivatives. Org. Lett. 22, 8245–8249 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Honke, K. & Taniguchi, N. Sulfotransferases and sulfated oligosaccharides. Med. Res. Rev. 22, 637–654 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Santra, A. et al. Systematic chemoenzymatic synthesis of O-sulfated sialyl Lewis x antigens. Chem. Sci. 7, 2827–2831 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Gao, T. et al. Chemoenzymatic synthesis of O-mannose glycans containing sulfated or nonsulfated HNK-1 epitope. J. Am. Chem. Soc. 141, 19351–19359 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Yu, B. & Tao, H. Glycosyl trifluoroacetimidates. Part 1: preparation and application as new glycosyl donors. Tetrahedron Lett. 42, 2405–2407 (2001).

    Article  CAS  Google Scholar 

  59. Zhang, L. et al. Design and synthesis of neutralizable fondaparinux. JACS Au 2, 2791–2799 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bhattacharya, S. K. & Danishefsky, S. J. A total synthesis of the methyl glycoside of ganglioside GM1. J. Org. Chem. 65, 144–151 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Nyffeler, P. T., Liang, C.-H., Koeller, K. M. & Wong, C.-H. The chemistry of amine–azide interconversion: catalytic diazotransfer and regioselective azide reduction. J. Am. Chem. Soc. 124, 10773–10778 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Koinuma, R., Tohda, K., Aoyagi, T. & Tanaka, H. Chemical synthesis of α(2,8) octasialosides, the minimum structure of polysialic acids. Chem. Commun. 56, 12981–12984 (2020).

    Article  CAS  Google Scholar 

  63. Lin, C.-C. et al. 5-N,4-O-Carbonyl-7,8,9-tri-O-chloroacetyl-protected sialyl donor for the stereoselective synthesis of α-(2→9)-tetrasialic acid. J. Org. Chem. 75, 4921–4928 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. van der Vorm, S. et al. Acceptor reactivity in glycosylation reactions. Chem. Soc. Rev. 48, 4688–4706 (2019).

    Article  PubMed  Google Scholar 

  65. Xu, Z. et al. Diversity-oriented chemoenzymatic synthesis of sulfated and nonsulfated core 2 O-GalNAc glycans. J. Org. Chem. 86, 10819–10828 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. ’t Hart, I. M. E. et al. Chemoenzymatic synthesis of the oligosaccharide moiety of the tumor-associated antigen disialosyl globopentaosylceramide. Org. Biomol. Chem. 17, 7304–7308 (2019).

    Article  PubMed  Google Scholar 

  67. Yu, H. et al. Chemoenzymatic synthesis of GD3 oligosaccharides and other disialyl glycans containing natural and non-natural sialic acids. J. Am. Chem. Soc. 131, 18467–18477 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Distler, J. J. & Jourdian, G. W. The purification and properties of β-galactosidase from bovine testes. J. Biol. Chem. 248, 6772–6780 (1973).

    Article  CAS  PubMed  Google Scholar 

  69. Wang, P., Zhu, J., Yuan, Y. & Danishefsky, S. J. Total synthesis of the 2,6-sialylated immunoglobulin G glycopeptide fragment in homogeneous form. J. Am. Chem. Soc. 131, 16669–16671 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang, J. Q., Nicoll, G., Jones, C. & Crocker, P. R. Siglec-9, a novel sialic acid binding member of the immunoglobulin superfamily expressed broadly on human blood leukocytes. J. Biol. Chem. 275, 22121–22126 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Barkal, A. A. et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature 572, 392–396 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rapoport, E., Mikhalyov, I., Zhang, J., Crocker, P. & Bovin, N. Ganglioside binding pattern of CD33-related siglecs. Bioorg. Med. Chem. Lett. 13, 675–678 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Bärenwaldt, A. & Läubli, H. The sialoglycan-Siglec glyco-immune checkpoint – a target for improving innate and adaptive anti-cancer immunity. Expert Opin. Ther. Targets 23, 839–853 (2019).

    Article  PubMed  Google Scholar 

  74. Li, Z. et al. Synthetic O-acetylated sialosides facilitate functional receptor identification for human respiratory viruses. Nat. Chem. 13, 496–503 (2021).

    Article  CAS  PubMed  Google Scholar 

  75. Lu, N. et al. A redox-controlled substrate engineering strategy for site-specific enzymatic fucosylation. Angew. Chem. Int. Ed. 61, e202211032 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (22077130 and 22377134 to T.L.; 22325704 and 92353303 to W.Y.), Shanghai Municipal Science and Technology Major Project (T.L.), Chinese Academy of Sciences Pioneer Talent Program (T.L.) and Science and Technology Commission of Shanghai Municipality (20ZR1467900 to T.L.). We thank L. Sun and Y. Zhou (Northeast Normal University) for providing β1,3-galactosidase and P. Wang (Shanghai Jiao Tong University) for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

T.L. and Z.X. designed the research and experiments. Z.X., Y.L., J.L., W.M. and Z.Z. performed experiments. D.G.C., L.W., K.W.M. and W.Y. contributed enzyme reagents. T.L. wrote the manuscript. Z.X. wrote the Supplementary Information. All authors contributed to reviewing and editing of the manuscript.

Corresponding author

Correspondence to Tiehai Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Sabine Flitsch, Chi-Huey Wong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–93, Tables 1–67, detailed Methods, materials and copies of NMR spectra.

Reporting Summary

Supplementary Data

Source data for Supplementary Figs. 13–20.

Source data

Source Data Fig. 5

Microarray data for the binding profiles of Siglecs towards ganglioside glycans.

Source Data Fig. 6

Microarray data for the binding specificities of virus proteins and bacterial toxins towards ganglioside glycans.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Liu, Y., Liu, J. et al. Integrated chemoenzymatic synthesis of a comprehensive sulfated ganglioside glycan library to decipher functional sulfoglycomics and sialoglycomics. Nat. Chem. 16, 881–892 (2024). https://doi.org/10.1038/s41557-024-01540-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-024-01540-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing