Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Copper sulfide mineral performs non-enzymatic anaerobic ammonium oxidation through a hydrazine intermediate

Abstract

Anaerobic ammonium oxidation (anammox)—the biological process that activates ammonium with nitrite—is responsible for a significant fraction of N2 production in marine environments. Despite decades of biochemical research, however, no synthetic models capable of anammox have been identified. Here we report that a copper sulfide mineral replicates the entire biological anammox pathway catalysed by three metalloenzymes. We identified a copper–nitrosonium {CuNO}10 complex, formed by nitrite reduction, as the oxidant for ammonium oxidation that leads to heterolytic N–N bond formation from nitrite and ammonium. Similar to the biological process, N2 production was mediated by the highly reactive intermediate hydrazine, one of the most potent reductants in nature. We also found another pathway involving N–N bond heterocoupling for the formation of hybrid N2O, a potent greenhouse gas with a unique isotope composition. Our study represents a rare example of non-enzymatic anammox reaction that interconnects six redox states in the abiotic nitrogen cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mineral screening for non-enzymatic anammox.
Fig. 2: Determination of NO as an intermediate in non-enzymatic anammox.
Fig. 3: Reaction mechanism of NO-mediated anammox on CuS.
Fig. 4: Hydrazine production and oxidation.
Fig. 5: Proposed reaction scheme of non-enzymatic anammox.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the Article and its Supplementary Information or from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Lehnert, N., Musselman, B. W. & Seefeldt, L. C. Grand challenges in the nitrogen cycle. Chem. Soc. Rev. 50, 3640–3646 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Kuypers, M. M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Mulder, A., Graaf, A. A., Robertson, L. A. & Kuenen, J. G. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. Ecol. 16, 177–184 (1995).

    Article  CAS  Google Scholar 

  4. Arrigo, K. R. Marine microorganisms and global nutrient cycles. Nature 437, 349–355 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Babbin, A. R., Keil, R. G., Devol, A. H. & Ward, B. B. Organic matter stoichiometry, flux, and oxygen control nitrogen loss in the ocean. Science 344, 406–408 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Zehr, J. P. & Capone, D. G. Changing perspectives in marine nitrogen fixation. Science 368, eaay9514 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Kartal, B., Kuenen, J. G. & van Loosdrecht, M. C. Sewage treatment with anammox. Science 328, 702–703 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Kuenen, J. G. Anammox bacteria: from discovery to application. Nat. Rev. Microbiol. 6, 320–326 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Deng, Y. F. et al. Coupling sulfur-based denitrification with anammox for effective and stable nitrogen removal: a review. Water Res. 224, 119051 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. van Niftrik, L. & Jetten, M. S. Anaerobic ammonium-oxidizing bacteria: unique microorganisms with exceptional properties. Microbiol. Mol. Biol. Rev. 76, 585–596 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lindsay, M. R. et al. Cell compartmentalisation in planctomycetes: novel types of structural organisation for the bacterial cell. Arch. Microbiol. 175, 413–429 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Strous, M. et al. Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440, 790–794 (2006).

    Article  PubMed  Google Scholar 

  13. Kartal, B. et al. Molecular mechanism of anaerobic ammonium oxidation. Nature 479, 127–130 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Akram, M. et al. A 192-heme electron transfer network in the hydrazine dehydrogenase complex. Sci. Adv. 5, eaav4310 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ferousi, C., Majer, S. H., DiMucci, I. M. & Lancaster, K. M. Biological and bioinspired inorganic N–N bond-forming reactions. Chem. Rev. 120, 5252–5307 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dietl, A. et al. The inner workings of the hydrazine synthase multiprotein complex. Nature 527, 394–397 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Kolb, V. M., Dworkin, J. P. & Miller, S. L. Alternative bases in the RNA world: the prebiotic synthesis of urazole and its ribosides. J. Mol. Evol. 38, 549–557 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Stephen-Sherwood, E., Oro, J. & Kimball, A. P. Thymine: a possible prebiotic synthesis. Science 173, 446–447 (1971).

    Article  CAS  PubMed  Google Scholar 

  19. Kraft, B. et al. Oxygen and nitrogen production by an ammonia-oxidizing archaeon. Science 375, 97–100 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Frame, C. H., Lau, E., Nolan, E. J. T., Goepfert, T. J. & Lehmann, M. F. Acidification enhances hybrid N2O production associated with aquatic ammonia-oxidizing microorganisms. Front. Microbiol. 7, 2104 (2016).

    PubMed  Google Scholar 

  21. Terada, A. et al. Hybrid nitrous oxide production from a partial nitrifying bioreactor: hydroxylamine interactions with nitrite. Environ. Sci. Technol. 51, 2748–2756 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Stieglmeier, M. et al. Aerobic nitrous oxide production through N-nitrosating hybrid formation in ammonia-oxidizing archaea. ISME J. 8, 1135–1146 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mullaliu, A. et al. Disclosing the redox pathway behind the excellent performance of CuS in solid-state batteries. Small Methods 6, 2200913 (2022).

    Article  CAS  Google Scholar 

  24. Peng, C. et al. Double sulfur vacancies by lithium tuning enhance CO2 electroreduction to n-propanol. Nat. Commun. 12, 1580 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hu, Z., Wessels, H., van Alen, T., Jetten, M. S. M. & Kartal, B. Nitric oxide-dependent anaerobic ammonium oxidation. Nat. Commun. 10, 1244 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. He, D. et al. Regulation of the electrocatalytic nitrogen cycle based on sequential proton–electron transfer. Nat. Catal. 5, 798–806 (2022).

    Article  Google Scholar 

  27. He, D. et al. Selective electrocatalytic reduction of nitrite to dinitrogen based on decoupled proton-electron transfer. J. Am. Chem. Soc. 140, 2012–2015 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Wijeratne, G. B., Bhadra, M., Siegler, M. A. & Karlin, K. D. Copper(I) complex mediated nitric oxide reductive coupling: ligand hydrogen bonding derived proton transfer promotes N2O(g) release. J. Am. Chem. Soc. 141, 17962–17967 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bhadra, M. et al. Reductive coupling of nitric oxide by Cu(I): stepwise formation of mono- and dinitrosyl species en route to a cupric hyponitrite intermediate. J. Am. Chem. Soc. 145, 2230–2242 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lehnert, N. et al. The biologically relevant coordination chemistry of iron and nitric oxide: electronic structure and reactivity. Chem. Rev. 121, 14682–14905 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Fujisawa, K. et al. Structural and spectroscopic characterization of mononuclear copper(I) nitrosyl complexes: end-on versus side-on coordination of NO to copper(I). J. Am. Chem. Soc. 130, 1205–1213 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Ruggiero, C. E., Carrier, S. M. & Tolman, W. B. Reductive disproportionation of NO mediated by copper complexes: modeling N2O generation by copper proteins and heterogeneous catalysts. Angew. Chem. Int. Ed. 33, 895–897 (1994).

    Article  Google Scholar 

  33. Enemark, J. H. & Feltham, R. D. Principles of structure, bonding, and reactivity for metal nitrosyl complexes. Coord. Chem. Rev. 13, 339–406 (1974).

    Article  CAS  Google Scholar 

  34. Zhang, S., Melzer, M. M., Sen, S. N., Celebi-Olcum, N. & Warren, T. H. A motif for reversible nitric oxide interactions in metalloenzymes. Nat. Chem. 8, 663–669 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Kalita, A., Kumar, P., Deka, R. C. & Mondal, B. First example of a Cu(I)–(η2-O,O)nitrite complex derived from Cu(II)–nitrosyl. Chem. Commun. 48, 1251–1253 (2012).

    Article  CAS  Google Scholar 

  36. Sarma, M. & Mondal, B. Nitric oxide reduction of copper(II) complexes: spectroscopic evidence of copper(II)-nitrosyl intermediate. Inorg. Chem. 50, 3206–3212 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Su, J. X. & Chen, S. L. A key piece in the global N-cycle: the N–N bond formation presented by heme-dependent hydrazine synthase. ACS Catal. 11, 6489–6498 (2021).

    Article  CAS  Google Scholar 

  38. Jencks, W. P. Requirements for general acid-base catalysis of complex reactions. J. Am. Chem. Soc. 94, 4731–4732 (1972).

    Article  CAS  Google Scholar 

  39. Dusenbury, J. H. & Powell, R. E. Reactions of nitrous acid. I. Ammonium nitrite decomposition1. J. Am. Chem. Soc. 73, 3266–3268 (1951).

    Article  CAS  Google Scholar 

  40. Nguyen, D. A., Iwaniw, M. A. & Fogler, H. S. Kinetics and mechanism of the reaction between ammonium and nitrite ions: experimental and theoretical studies. Chem. Eng. Sci. 58, 4351–4362 (2003).

    Article  CAS  Google Scholar 

  41. Kominami, H., Kitsui, K., Ishiyama, Y. & Hashimoto, K. Simultaneous removal of nitrite and ammonia as dinitrogen in aqueous suspensions of a titanium(iv) oxide photocatalyst under reagent-free and metal-free conditions at room temperature. RSC Adv. 4, 51576–51579 (2014).

    Article  CAS  Google Scholar 

  42. Hellebust, S., O’Sullivan, D. & Sodeau, J. R. Protonated nitrosamide and its potential role in the release of HONO from snow and ice in the dark. J. Phys. Chem. A 114, 11632–11637 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Doane, T. A. The abiotic nitrogen cycle. ACS Earth Space Chem. 1, 411–421 (2017).

    Article  CAS  Google Scholar 

  44. Ettwig, K. F. et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464, 543–548 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. He, D. et al. Atomic-scale evidence for highly selective electrocatalytic N–N coupling on metallic MoS2. Proc. Natl Acad. Sci. USA 117, 31631–31638 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jensen, K. F. Flow chemistry—microreaction technology comes of age. AIChE J. 63, 858–869 (2017).

    Article  CAS  Google Scholar 

  47. Cao, S., Du, R., Peng, Y., Li, B. & Wang, S. Novel two stage partial denitrification (PD)-anammox process for tertiary nitrogen removal from low carbon/nitrogen (C/N) municipal sewage. Chem. Eng. J. 362, 107–115 (2019).

    Article  CAS  Google Scholar 

  48. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 44, 1272–1276 (2011).

    Article  CAS  Google Scholar 

  49. Kitadai, N. et al. Metals likely promoted protometabolism in early ocean alkaline hydrothermal systems. Sci. Adv. 5, eaav7848 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kitadai, N. et al. Geoelectrochemical CO production: implications for the autotrophic origin of life. Sci. Adv. 4, eaao7265 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 12, 537–541 (2005).

    Article  CAS  Google Scholar 

  52. Peng, S. X. et al. Gas chromatographic–mass spectrometric analysis of hydroxylamine for monitoring the metabolic hydrolysis of metalloprotease inhibitors in rat and human liver microsomes. J. Chromatogr. B 724, 181–187 (1999).

    Article  CAS  Google Scholar 

  53. Shaw, D. R. et al. Extracellular electron transfer-dependent anaerobic oxidation of ammonium by anammox bacteria. Nat. Commun. 11, 2058 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Watt, G. W. & Chrisp, J. D. Spectrophotometric method for determination of hydrazine. Anal. Chem. 24, 2006–2008 (1952).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Ofuchi (BL14B2), S. Hamamoto and M. Oura (BL17SU) for their assistance with the XAFS measurements at SPring-8 and K. Nishiuchi at the Earth-Life Science Institute for her support on the QTOF–MS measurements. We also thank M. Watanuki at Advanced Manufacturing Support Team in RIKEN for making the sample holder for XAFS experiments. R.N. discloses support for the research of this work from JSPS Grant-in-Aid for Scientific Research (no. 22H05153). The synchrotron radiation experiments were performed at the BL14B2 of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (proposal nos. 2021A1664, 2021B1920, 2022A1045 and 2022A1669) and at the BL17SU with the approval of RIKEN (proposal no. 20220060).

Author information

Authors and Affiliations

Authors

Contributions

D. He and R.N. conceived and designed the experiments. D. He performed the experiments. K.A. and D. He performed the XAFS measurements. D. He, K.A. and D. Ha. analysed the X-ray experiments. D. He and R.N. co-wrote the paper. All of the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Daoping He or Ryuhei Nakamura.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Shiyu Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Figs. 1–29, Tables 1 and 2 and References.

Supplementary Video 1

Anammox reaction on a mix rotor.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, D., Adachi, K., Hashizume, D. et al. Copper sulfide mineral performs non-enzymatic anaerobic ammonium oxidation through a hydrazine intermediate. Nat. Chem. (2024). https://doi.org/10.1038/s41557-024-01537-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-024-01537-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing