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Machine learning designs new GCGR/GLP-
1R dual agonists with enhanced biological 
potency

Anna M. Puszkarska    1,6, Bruck Taddese2,7, Jefferson Revell    2, Graeme Davies3, 
Joss Field3, David C. Hornigold    3, Andrew Buchanan    4, Tristan J. Vaughan4,8 & 
Lucy J. Colwell    1,5 

Several peptide dual agonists of the human glucagon receptor (GCGR) and 
the glucagon-like peptide-1 receptor (GLP-1R) are in development for the 
treatment of type 2 diabetes, obesity and their associated complications. 
Candidates must have high potency at both receptors, but it is unclear 
whether the limited experimental data available can be used to train 
models that accurately predict the activity at both receptors of new peptide 
variants. Here we use peptide sequence data labelled with in vitro potency at 
human GCGR and GLP-1R to train several models, including a deep multi-task 
neural-network model using multiple loss optimization. Model-guided 
sequence optimization was used to design three groups of peptide variants, 
with distinct ranges of predicted dual activity. We found that three of the 
model-designed sequences are potent dual agonists with superior biological 
activity. With our designs we were able to achieve up to sevenfold potency 
improvement at both receptors simultaneously compared to the best 
dual-agonist in the training set.

Peptide hormones signal through cell membrane receptors to com-
municate and regulate a myriad of physiological processes, including 
energy metabolism, growth, sleep and blood pressure. Helical peptides 
that are known to play key roles in maintaining metabolic homeostasis 
include, among others, glucagon (GCG) and glucagon-like peptide-1 
(GLP-1), which signal and agonise the G-protein-coupled receptors 
(GPCR) GCGR and GLP-1R, respectively1. GLP-1R agonists have been 
shown to lower blood glucose, inhibit food intake and substantially 
reduce body weight2. Chemical analogues of GLP-1 are currently 
approved for the treatment of type 2 diabetes (T2D) and obesity3,4. 
Moreover, peptide analogues that are unimolecular co-agonists of both 
GLP-1R and GCGR are currently in clinical development for the treat-
ment of T2D, obesity and non-alcoholic steatohepatitis (NASH)2,3,5–7.

Several studies have been carried out with the goal of deriving new 
class B GPCR targeting agents8–13. The design of high-potency unimo-
lecular GCGR/GLP-1R dual agonists has revolved around substitutions 
in the mid and C-terminal segments of proposed analogues5,14–16. Deter-
mination of the receptor–ligand co-crystal structures and mutational 
studies have led to a two-step model of peptide binding and receptor 
activation17–20. The mechanism is thought to involve binding of the 
peptide C terminus to the receptor extracellular domain, followed 
by insertion of the peptide N terminus into the pocket formed by the 
transmembrane helices and extracellular loops, instigating receptor 
activation and signalling19.

However, despite recent progress in understanding the mech-
anisms of receptor activation, the relationship between peptide 
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effective concentration (EC50). A lower EC50 indicates a higher peptide 
potency, or ability to agonise receptor signalling. In this Article, the EC50 
values at human GCGR and GLP-1R for cyclic adenosine monophos-
phate (cAMP) second messenger signalling were set as the optimization 
targets. The experimental EC50 values were generated using in vitro 
cell-based activity assays.

Our models assume that the biological activity of a peptide is 
dictated by its primary sequence, which we represent using simple 
one-hot encoding25–27. We compared several different regression model 
architectures, evaluating model performance using held-out test 
sequences that were distinct from those used to train the model. Sur-
prisingly, given the limited amount of training data, we found that an 
ensemble of multi-task convolutional neural-network (CNN) models 
that simultaneously predict potency at both GCGR and GLP-1R provides 
significantly better performance against GLP-1R, whereas performance 
differences against GCGR were largely not significant. To prospectively 

sequence and functional activity is not fully understood. Engineering 
new peptides with desired selectivity profiles requires time-consuming 
and expensive cycles of design-make-test-analyse (DMTA) work. To 
address this problem, we propose that existing experimental data 
can be used to train machine learning (ML) models that are able to 
extrapolate in sequence space to accurately predict the activity of 
novel multi-specific peptide analogues. Recently, several efforts 
have been focused on the development of ML models for peptide21,22 
and small-molecule23,24 design, demonstrating the success of these 
approaches in de novo prediction of functional molecules.

In this Article we use a set of 125 experimentally characterized 
glucagon and GLP-1 peptide analogues to train models that capture 
the relationship between peptide sequence and agonism or receptor 
activation at both the GCGR and GLP-1R. The degree of receptor activa-
tion is typically reported as the peptide concentration required for a 
response to reach 50% of its maximal value, known as the half-maximal 
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Fig. 1 | Building models that predict peptide potency at both GCGR and  
GLP-1R. a, The α-helical peptide (top left) binds to the extracellular domain of the 
GPC receptor (top right), inducing a change in receptor conformation that in turn 
binds to the G-protein at the cytoplasmic interface (bottom) (PDB 5VAI).  
b, Sequence variants (125 examples) are divided into four categories based on 
their activities: (1) strongly activates both receptors (yellow area), selectively 
activates (2) GCGR (green) or (3) GLP-1R (blue), or (4) activates neither receptor 

(pink). The activity threshold of −11 (that is, 10 pM) is chosen as being within 
tenfold of the native ligand activity for each receptor. c, Structures of human 
glucagon and glucagon-like peptide-1 (7-37) (PDB 1GCN and 6X18). d, Histogram 
showing the joint distribution of the number of mutations to the natural ligands 
for the training dataset, as well as the marginal mutation distribution for each 
reference molecule. aa, amino acids.
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test the ability of this model to design new peptides with specific activ-
ity, we used a simple optimization strategy to design 15 peptides, five 
in each of three different activity profiles: selective potency at GCGR, 
selective potency at GLP-1R or high-potency at both receptors.

Results
Training data
We used experimental potency measurements (EC50) at both GCGR 
and GLP-1R for a total of 125 peptide variants to fit models that relate 
peptide sequences to in vitro activity against each receptor. Figure 1b 
visualizes these data together with four activity regions represent-
ing the possible potency measurements at hGCG and hGLP-1 for 
dual-agonist peptides. We note that variants with high potency at 
GCGR are under-represented in this dataset (14.4%) compared with 
peptides that are strongly potent at GLP-1R (37.6%). In particular, only 
four peptide variants selectively activated GCGR (3.2%, region marked 
in green). In contrast, several peptides with high potency at GLP-1R 
are in fact GLP-1R-selective (25.6% of all training-set examples). Dual 
agonists comprise 11.2% of the training set, and the best representative 
has potencies of log10(EC50) = −12.08 (0.83 pM) and −11.50 (3.19 pM) at 
hGCGR and hGLP-1R, respectively. Notably, nearly 60% of training-set 
examples are inactive at both receptors.

The glucagon peptide contains 29 amino acids, and bioactive GLP-1 
contains 30 amino acids terminating in an amide or 31 amino acids 
terminating in an acid. Overall, the native hGCG and hGLP-1 peptide 
sequences differ at 15 of 29 positions. The addition of a C-terminal 
amide to glucagon together with modification of position 14 has previ-
ously been shown to stabilize the C-terminal helix and enhance GLP-1R 
binding while maintaining activity against GCGR14,20.

Our training dataset contains examples with as few as two and 
as many as 20 modifications from the wild-type human glucagon 
sequence, with some examples containing mutations drawn from 
the wild-type human GLP-1 sequence. In Fig. 1d, a histogram shows 
the distribution of the number of mutations across the training data. 
The average distance of a training set sequence to hGCG is 13.4 with a 
standard deviation of 5.7, and on average there are 11 point mutations 
to hGLP-1 with a standard deviation of 7.24. Moreover, at least 26 of 125 
training samples are variants of GLP-1 in which between one and five 
amino acids have been deleted, resulting in no significant activity at 
either GCGR or GLP-1R. A further four variants have deletions in the 
last part of the C-terminal region; however, these analogues do retain 

potency at GLP-1R. In contrast, a variant with five mutations from 
glucagon, none of which are present in GLP-1, activates both receptors, 
while many variants with some GLP-1 chimera mutations and some 
other mutations report various potencies at both receptors. It has 
previously been observed that the GLP-1R does not readily distinguish 
the N-terminal regions of these two hormones16, although our data 
contain examples where a single mutation in the N-terminal region of 
GLP-1 abrogates GLP-1R activity, suggesting additional nuances in the 
landscape relating peptide sequence to functional activity.

To describe the distribution of the training data in terms of 
sequence similarity, we used principal component analysis (PCA). 
Figure 2 shows the training data projected into the two-dimensional 
(2D) space determined by the first and second principal components. 
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Fig. 2 | Low-dimensional representation of the training data. a, Projection of 
the 125 training set sequences (grey) and 19 independent sequences from the 
literature (blue)15 onto the first (PC1, x axis) and second (PC2, y axis) principal 
components of the covariance matrix of the training set. All possible single-site 

mutants of human glucagon (cyan) and human GLP-1 (purple) are included as 
a reference to facilitate evaluation of sequence diversity across the training set 
samples. b, Projected training set sequences coloured by their potency category, 
following the colour scheme introduced in Fig. 1b.

Table 1 | Model performance evaluation using sixfold 
cross-validation to split the AstraZeneca experimental data 
and model validation using measurements for 19 peptides 
from Day et al.15 that are distinct from any of the sequences 
contained in the AstraZeneca dataset (sequences shown in 
Extended Data Table 1)

Models Cross-validation on  
training data

Validation on held-out 
literature data15

R.m.s.e. 
GCGR

R.m.s.e. 
GLP-1R

R.m.s.e. 
GCGR

R.m.s.e. 
GLP-1R

Ridge 0.63 ± 0.06 0.75 ± 0.10 1.12 ± NA 0.63 ± NA

SVR 0.60 ± 0.04 0.81 ± 0.07 1.09 ± NA 0.45 ± NA

GPR 0.69 ± 0.17 0.88 ± 0.23 1.25 ± NA 0.25 ± NA

Random forest 0.62 ± 0.04 0.77 ± 0.06 0.98 ± 0.05 0.61 ± 0.06

NN single-task 0.67 ± 0.07 0.78 ± 0.07 0.92 ± 0.18 0.41 ± 0.11

NN multi-task 0.68 ± 0.06 0.78 ± 0.05 1.04 ± 0.08 0.73 ± 0.36

NN multi-task 
ensemble

0.59 ± 0.05 0.68 ± 0.04 0.86 ± 0.02 0.53 ± 0.08

Other model performance metrics are presented in Supplementary Tables 1 and 5. The 
root-mean-square error (r.m.s.e.) metric value shown for each model in the cross-validation 
columns is the average and the standard deviation computed over ten independent 
instantiations using different data splits. The error bars reported in the model validation 
columns result from models being retrained three times on the same data with different 
parameters initialization (model initialization variance). SVR, support vector regression; GPR, 
Gaussian process regression; NN, neural network; NA, value cannot be estimated. The best 
result in each category is highlighted in bold.

http://www.nature.com/naturechemistry
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Here, the covariance matrix CL21 × L21 has been determined for the array 
of one-hot-encoded training-set sequences. We also projected the 
complete sets of possible hGCG and hGLP-1 single point mutants into 
this space, to provide a sense of scale. This data projection reveals that 
the training set contains subsets of sequences that are a few mutations 
apart from hGCG (Fig. 2a, bottom left) and from hGLP-1 (Fig. 2a, bottom 
right). In addition, a number of sequence variants are roughly equi-
distant to both wild-type peptides (Fig. 2a, central region). Figure 2b 
shows that close hGLP-1 analogues tend to be inactive at both recep-
tors, or to exclusively activate hGLP-1R. Similarly, sequences that are 
hGCGR-selective exhibit close similarity to human glucagon. Surpris-
ingly, these data suggest that high peptide potency against both recep-
tors might require close sequence homology to glucagon, suggesting 
that the hGCG receptor might tolerate ligand mutations to a lower 
extent than the hGLP-1 receptor.

Model training and evaluation
We fit a set of supervised regression models using sixfold cross- 
validation by dividing the data into 105 training sequences, 10 valida-
tion sequences and 10 held-out test sequences for each fold to tune the 
model hyperparameters (Methods and Table 1). We then compared the 
performance of these models to a neural-network model that included 
both convolutional and fully connected layers, as described in the 
Methods and with the results summarized in Table 1, Supplementary 
Table 1 and Supplementary Fig. 1. To identify optimal hyperparameters 
for our deep model and for the baseline models, we used the same 
sixfold cross-validation scheme (Methods). After tuning the model 
hyperparameters, we then retrained the deep models using 120 sam-
ples for training, keeping five samples as a validation set with which to 

monitor performance on unseen data during training. All other models 
were retrained on the entire dataset.

We then asked whether multi-task learning (equation (1)) could be 
used to train a model that predicts peptide potency against both recep-
tors simultaneously. Multi-task learning aims to improve generalization 
and increase prediction accuracy by learning objectives for several 
target variables from shared representations28. The predictions made 
by neural-network models are subject to stochastic variation due to fac-
tors such as the random initialization of model parameters. To increase 
model robustness and mitigate epistemic uncertainty, we trained 
multiple copies of the same multi-task neural-network model and built 
a simple committee model, in which the final prediction is given by the 
average of the individual model predictions (details are provided in the 
Methods and Supplementary Fig. 2). The ensemble of 12 multi-task con-
volutional models achieves significantly better performance against 
GLP-1R across ten iterations of sixfold cross-validation on the train-
ing data (t-test, P = 0.05; Supplementary Table 3 and Supplementary 
Fig. 3), whereas performance differences against GCGR were largely 
not significant. We also built a simple nearest-neighbours model, and 
trained adversarial control models using data with shuffled sequences 
or targets (Supplementary Table 4 and Supplementary Fig. 4).

To further validate our models, we identified an additional set of 
peptide sequences from ref. 15 for which activity against GCGR and 
GLP-1R was biochemically characterized in vitro. Our trained models 
were used to make predictions for sequence variants from this dataset, 
without adjusting the model hyperparameters or weights. Table 1b 
shows that although overall model predictions on these data are less 
accurate, probably due to differences in the potency assays such as 
expected receptor expression levels and host cell background, the 
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Fig. 3 | Schematic representation of the model-guided ligand design directed 
evolution workflow. Training set sequences (G0) were used as a starting point. 
Sequences were then evolved by introducing a single point mutation. The 
potency at human GCGR and GLP-1R was then predicted for each sequence 
using the trained neural-network multi-task ensemble model. Next, a subset 
of sequences predicted to obtain the design goal was extracted and used as a 

starting point for the next generation (GN). This cycle was repeated three times 
(N = 3). The sequences from the first and last generation that best met the design 
goals were selected and their computationally predicted biophysical properties 
compared with the training set. A fraction of these were then chosen before 
chemical synthesis and tested in vitro.
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neural-network ensemble reports reasonable performance across 
both targets (also Extended Data Table 1, Supplementary Table 5 and 
Supplementary Fig. 5). Consequently, we decided to further evaluate 
the predictive accuracy of the multi-task ensemble model by testing 
its ability to carry out model-guided peptide design.

Ligand design
We next asked whether we can use our trained multi-task ensemble 
model to design peptide sequences that have (1) high potency for 
both GCGR and GLP-1R, (2) selective potency for GCGR or (3) selec-
tive potency for GLP-1R using the EC50 ranges defined in the Methods. 
To proceed, for each desired potency profile we carried out a directed 
search of sequence space that involved three rounds of model-guided 
sequence optimization, starting from training sequences with desirable 

potency values, and retaining the best variants from each round as the 
starting point for the next generation. After each round of optimiza-
tion, we retrieved the 50 sequence variants that the model predicts 
to have the best potencies, and of these, the five to ten most diverse 
sequence variants were used as the starting points for the next round of 
optimization (see Methods for details). Finally, we applied an additional 
filter to the best candidates to ensure that their predicted chemical and 
biophysical properties aligned well with those training set samples that 
had the required potency profile. This process is illustrated in Fig. 3.

For each design category we retained the 50 sequences from each 
of the first and third generations with best model-predicted potencies. 
The mutual information (equation (5)) between the model-designed 
sequences in each category and the training set is visualized in Supple-
mentary Fig. 6 (see Methods for details). For each design category, we 

Table 2 | Multi-task neural-network ensemble-predicted potencies of the 15 designed peptides are compared to their 
experimentally measured potencies against hGCGR and hGLP-1R (reported in pM)

ID Gen. Desired activity 
category

Predicted GCGR 
EC50 (pM)

Measured 
GCGR EC50 (pM)

Predicted GLP-
1R EC50 (pM)

Measured GLP-
1R EC50 (pM)

Sequence

hGCG – – – 1.16 – 206.00 HSQGTFTSDYSKYLDSRRAQDFVQWLMN

hGLP-1 – – – >10,000 – 1.36 HAEGTFTSDVSSYLEGQAAKEFIAWLVKGR

P1 S1 Dual 2.63 1.92 3.09 0.75 HSQGTFTSDYSKYLDSRAASEFVQWLISH

TP1 S0 – – 2.08 – 1.59 HSQGTFTSDYSKYLDSRAASEFVQWLISE

P2 S3 Dual 0.87 0.18 2.09 2.26 HSQGTFTSDYSKYLDSRRAYEFVEWLLSG

TP2 S0 – – 0.83 – 3.16 HSQGTFTSDYSKYLDSRRASEFVQWLISG

P3 S3 Dual 0.91 0.12 2.88 0.47 HSQGTFTSDYSKYLDSRRAYEFVEWLISL

TP3 S0 – – 0.83 – 3.16 HSQGTFTSDYSKYLDSRRASEFVQWLISG

P4 S3 Dual 0.93 5.02 3.09 23.10 HSQGTFTSDYYKYLDSRRAYEFVEWLISG

TP4 S0 – – 0.83 – 3.16 HSQGTFTSDYSKYLDSRRASEFVQWLISG

P5 S3 Dual 0.98 2.71 2.82 68.00 HSQGTFTSDYSKYLDSRRAYEFVEWLGSG

TP5 S0 – – 0.83 – 3.16 HSQGTFTSDYSKYLDSRRASEFVQWLISG

P6 S1 GCGR 8.32 >10,000 1174.90 >10,000 HSQGTFTSDYSKYLDSRRAQDFGQWLEAEE

TP6 S0 – – 8.31 – 1,621 HSQGTFTSDYSKYLDSRRAQDFVQWLEAEE

P7 S3 GCGR 6.61 >10,000 1023.29 >10,000 HSQGTFTSDYDKYLDSRRAQIFQQWLEAEE

TP7 S0 – – 8.31 – 1,621 HSQGTFTSDYSKYLDSRRAQDFVQWLEAEE

P8 S3 GCGR 6.76 >10,000 1,000.00 >10,000 HSQGTFTSDYDKYLDSRRAHDQVQWLEAEE

TP8 S0 – – 8.31 – 1,621 HSQGTFTSDYSKYLDSRRAQDFVQWLEAEE

P9 S3 GCGR 6.76 >10,000 1,148.15 >10,000 HSQGTFTSDYDKYLDSRRAQCFQQWLEAEE

TP9 S0 – – 8.31 – 1,621 HSQGTFTSDYSKYLDSRRAQDFVQWLEAEE

P10 S3 GCGR 6.91 >10,000 1,348.96 >10,000 HSQGTFTSDYDKYLDSRRAQTFRQWLEAEE

TP10 S0 – – 8.31 – 1,621 HSQGTFTSDYSKYLDSRRAQDFVQWLEAEE

P11 S1 GLP-1R >10,000 >10,000 6.17 495.00 HAEGTFTSDVASYLEGQAAKEFIPWLVKGR

TP11 S0 – – >10,000 – 1.78 HAEGTFTSDVASYLEGQAAKEFIAWLVKGR

P12 S3 GLP-1R 1,122.02 90.53 0.79 2.03 YSQGTFTSDYSAYLEEEAVRFFINWLLAG

TP12 S0 – – 10.00 – 1.07 YSQGTFTSDYSKYLEEEAVRLFIEWLLAG

P13 S3 GLP-1R 1,148.15 613.33 0.85 5.34 YSQGTFTSDYSAYLEEEAVRDFITWLLAG

TP13 S0 – – 10.00 – 1.07 YSQGTFTSDYSKYLEEEAVRLFIEWLLAG

P14 S3 GLP-1R 1,258.93 161.00 0.89 2.09 YSQGTFTSDYSAYLEEEAVRNFIWWLLAG

TP14 S0 – – 10.00 – 1.07 YSQGTFTSDYSKYLEEEAVRLFIEWLLAG

P15 S3 GLP-1R 1,412.54 271.68 0.96 16.37 YSQGTFTSDYSAYLEEEAVRDFIDWLLAG

TP15 S0 – – 10.00 – 1.07 YSQGTFTSDYSKYLEEEAVRLFIEWLLAG

Peptide designs 6–11 are 30 amino acids long; all other designed peptides contain 29 amino acids. The potencies predicted by the model in log scale (Fig. 4) are transformed here to facilitate 
comparison with the experimental results. For each sequence, the reported value is an arithmetic mean computed over three independent measurements (Supplementary Tables 12 and 13 
provide measurement details). For comparison, the closest training-set sample is listed for each model-designed compound (indicated as ID Tn, Gen 0) together with its measured potencies. 
Mutated amino acids are highlighted in bold in both sequences.

http://www.nature.com/naturechemistry
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estimated the probabilities of occurrence of amino acids at each site 
(position-specific scoring matrix (PSSM)) and calculated the entropy 
(equation (6)) across sequence positions in each generation of sequences. 

This analysis shed light on sequence regions that the model considered 
functionally important for each activity category, and we observed 
regions that were highly conserved or highly mutable (Supplementary 
Fig. 6). It is known that glucagon analogues with high potency tend to have 
strong helicity, together with an isoelectric point, stability and hydropho-
bicity that fall within specific ranges11,12,29. Similarly, helicity also impacts 
the activity of GLP-1 analogues30. These biophysical properties can be 
predicted from the sequence using well-known algorithms. We used the 
training set ranges of six biophysical properties (listed in the Methods) as 
additional criteria to further filter these 100 model-optimized sequences. 
To proceed, we divided our training set data into three groups using the 
potency regions shown in Fig. 1, and calculated the mean and standard 
deviation of each property within these groups. Then, for each optimized 
sequence, we computed the number of features for which the estimated 
property value was within one standard deviation of the mean calculated 
for the corresponding group of training-set sequences.

We prioritized samples that passed this screen while also consider-
ing sequence diversity measured by the point mutation distance among 
candidates within the same potency category to select 15 sequences, 
five designs for each of the three potency profiles, for experimental 
validation. The biophysical properties monitored during the selection 
process are listed for these final analogues in Extended Data Table 2, 
and a comparison between each sequence and the training data is pro-
vided in Extended Data Fig. 1. We followed the same design process for 
each baseline model, generating sets of five designs for each potency 
category for each model (Supplementary Fig. 7 and Supplementary 
Tables 6–11). We note that the predicted potencies for all sequence 
designs are highly consistent across the different models. Supplemen-
tary Fig. 7 shows a PCA analysis of the sequences designed by different 
models, which suggests that different models explore different regions 
of sequence space, as previously reported31.

Prospective experimental validation
The 15 model-designed compounds were chemically synthesized, 
and their experimentally measured potencies were determined using 
cell-based assays expressing human GLP-1 or glucagon receptors (as 
described in the Methods and used for experimental evaluation of the 
peptide training set). Potencies are reported in Table 2 and Supplementary 
Tables 12 and 13. Overall, we found that the model succeeded in designing 
peptide analogues with specific quantitative activity. Designs P1–P3 are 
potent at both GCGR and GLP-1R, and P4 and P5 have an EC50 of 68 pM or 
better at both receptors. This is a striking result given that fewer than 30 
training data points have measurements that fall within this range. Nota-
bly, our dual-agonist peptides P1, P2 and P3 have up to sevenfold higher 
potency at both receptors than any other data point in the training set, 
as shown in Fig. 4c. Our best construct, P3, exhibits 7.2-fold and 8.3-fold 
potency improvements at hGCGR and hGLP-1R, respectively.

Peptides P11–P15 were designed to have selective activity at 
GLP-1R. Here we note that the model’s ability to ablate activity at GCGR 
was successful, with four of five designs reporting EC50 measurements 
of >161 pM. Of these, four of five designs had measured EC50 values of 
16.37 pM or better at GLP-1R, and the model also successfully identified 
that the activity was highly sensitive to amino-acid changes at positions 
21–24, which were varied in designs P12–P15. Of these designs, P11 was 
the least successful, with a measured EC50 of 495 pM against GLP-1R.

In contrast, our ability to design peptides selective for GCGR was 
poor, probably due to model overfitting to the limited available training 
data. When designing the peptides, we noticed that designs P6–P10 
(Extended Data Table 2, green) had lower predicted stability and were 
significantly more hydrophilic than the other designs. Although the 
model was successful in that these compounds were inactive at GLP-1R, 
none of these peptides were active at GCGR. We note that this was the 
region of the design space for which only four training points were 
available in our dataset (Figs. 1b and 4c), and the failure of the model 
to capture this activity probably reflects this paucity of training data.
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Natural peptide analogues
We used our validated multi-task neural-network ensemble to explore 
whether natural GCG and GLP-1 peptide orthologues found in 288 spe-
cies (listed in Supplementary Tables 15 and 16) have potency properties 

aligned with potential therapeutic candidates. Supplementary Fig. 8 
shows the predicted potency for each GCG and GLP-1 orthologue at 
each receptor. We note that all tested natural homologues of GLP-1 
are predicted to be inactive at human GCGR, whereas natural glucagon 
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variants have on average around four times higher affinity towards 
GCGR than towards GLP-1R. These orthologues may provide useful 
seeds for ML-guided compound design. For example, the glucagon 
variant from the common degu (Octodon degus) is predicted to have 
high GCGR selectivity—the category that was under-represented in 
the dataset used to train models in this work—whereas other glucagon 
variants have high predicted potency against both receptors. These 
sequences have been subject to the pressures of natural selection, and 
so may already possess desirable attributes such as optimal biophysi-
cal properties and minimal off-target effects, at least in non-human 
organisms.

Discussion
In this work we have trained an ensemble of multi-task convolutional 
neural networks using characterized peptide variants and thus 
designed and optimized 15 previously uncharacterized helical pep-
tides with specific predicted dual-activity profiles. Our constructs 
were then synthesized and subjected to experimental verification. Our 
multi-task neural-network model successfully predicts peptides that 
exhibit high bioactivity against both receptors or are selective towards 
GLP-1R. On the other hand, the model fails to predict peptide sequences 
with selective activity towards glucagon receptors, probably reflecting 
the paucity of training data points with this selective activity profile.

Figure 5 presents a comparison of our model-optimized con-
structs with the wild-type GPCR-binding ligands—human glucagon and 
human GLP-1. Only P11 is a close analogue of hGLP-1, with two substi-
tutions at position 11 (S → A) and position 24 (A → P) in the N-terminal 
and C-terminal helices, respectively. In contrast to our expectation, 
these two substitutions decrease peptide potency at GLP-1R nearly 
400 times, even though, to the best of our knowledge, neither of these 
positions has been identified as crucial for hGLP-1 activity30. This unex-
pected potency loss may result from the unique properties of proline, 
which was not seen at position 24 across the training-set examples. Our 
four remaining GLP-1R-selective constructs—P12–P15—have 13 resi-
dues changed with respect to hGLP-1. Our model was able to correctly 
preserve amino acids at positions 4, 7, 9, 22 and 23, which are known 
to be important for GLP-1R activation30, among all selective peptides 
(P11–P15), replacing only position 23 with a conservative substitution, 
I → V, for the dual-agonist peptide designs P1–P5. More importantly, 
the model specifically targets position 23 in constructs designed to 
be inactive at GLP-1R (P6–P10, Fig. 5b, marked in green). In addition, 
the model-imposed aspartate at positions 27, 29 and 30 consistently 
features in all GLP-1R-inactive peptides. Constructs P1 and P3 have 
2- and 3.6-fold higher potency against human GLP-1R than the natural 
GLP-1 (Fig. 5b). Both of these designs carry a mutation at position 29, 
recognized to be important for GLP-1R activation by GLP-132, G → H (P1) 
and G → L (P3). In both cases, these are not isofunctional mutations; 
moreover, L at position 29 is a novel substitution, introduced by the 
model.

The comparison with hGCG shown in Fig. 5a indicates that con-
structs P1–P10 are close hGCG analogues, with five to seven substitu-
tions in the C-terminal region, whereas the GLP-1R-selective peptide 
designs are further from hGCG in sequence space (blue points). Across 
peptides that exhibit high potency at both receptors (marked in yel-
low), changes tend to involve position 20, and positions 27–29 at the 
C-terminal end. Remarkably, our constructs P2 and P3 are around seven 
and ten times more potent at hGCGR than natural hGCG, respectively. 
Several studies indicate the importance of the N terminus for glucagon 
activity33,34. Concordantly, our model tends not to impose changes in 
this region among peptide analogues designed to exhibit high potency 
at human GCGR. Among the peptides designed to be selective towards 
GCGR (marked in green), four have substitutions at position 11 (S → D) 
and position 23 (V to G, Q or R). Moreover, despite preserving V at posi-
tion 23, our design P8 contains two new mutations (position 20 H and 
position 22 Q), which were not seen in the training set (Extended Data 

Fig. 1). We suspect that these mutations may be responsible for the 
unexpected loss of peptide affinity towards human GCGR.

Comparison with the training set shows that our conservative 
sequence design strategy introduces multiple mutations not seen 
during training (Fig. 5 and Extended Data Fig. 1). For example, our most 
successful design, P3, contains five mutations, each seen in <20% of 
training-set sequences, including Y20 (2%) and E24 (6%). Moreover, it 
adds L at position 29, which was not seen in the training data. Designs 
P1, P2, P4 and P5, which show high activity at both receptors, also incor-
porate four to six mutations that were not prevalent among training-set 
examples, mostly in the C-terminal region of the sequence. Design P14, 
which satisfies the GLP-1R selectivity criteria, has four low-frequency 
substitutions and two new mutations introduced at positions 21 and 
24, occupied by residues N and W, respectively.

The model-guided search presented in this study enables molecu-
lar optimization to improve peptide potency and selectivity. The pre-
diction of peptide in vivo parameters determining biological stability, 
such as pharmacokinetics (PK) or potential immunogenicity risk would 
comprise an interesting extension to the presented study with the goal 
of building general ML-guided modelling pipelines that can result in 
directly translatable designs.

Remarkably, despite limited training data, our framework achieves 
three out of five designs in the most desirable space of dual agonists 
that surpass the best compounds in the training set, with one of our 
designs (P3) simultaneously improving both potencies by more than 
sevenfold. Our study showcases the power of ML applied to peptide 
engineering, demonstrating that sophisticated models can be trained 
using limited pre-existing datasets to design molecules with significant 
improvements in functional activity. It is likely that our model’s abil-
ity to generalize and make more accurate predictions will improve as 
more training examples become available, particularly in the missing 
region of selective peptide activity. Using active learning to collect 
more data specifically in this region of sequence space and extending 
the sequence design capabilities by improving model performance is 
certainly an excellent direction for future studies. This work explores 
ligand optimization over a restricted design space, constrained by 
factors such as the limited diversity of the training data and the trust 
region of the model. As more training data and specifically more diverse 
training sequences become available, we anticipate that the trained 
model may accurately extrapolate further in sequence space, relieving 
these constraints and greatly expanding the corresponding search 
space to potentially uncover additional sequence design solutions. 
So far, three G-protein-coupled receptors of the incretin family have 
long been recognized as key regulators of human metabolism—GCGR, 
GLP-1R and GIP11. The multi-task learning approach presented in this 
study comprises an exciting opportunity for future research that aims 
to design triple agonist peptides to tackle metabolic-related patholo-
gies such as obesity or diabetes.
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Methods
Potency assays
Peptide potencies for cAMP accumulation were experimentally deter-
mined for the activation of both hGCGR and hGLP-1R expressed in 
Chinese hamster ovary (CHO) cells for a set of 125 unique peptide 
sequence variants, following methods described previously16,35. In 
brief stable CHO cell lines expressing human and mouse GLP-1R were 
generated in-house using standard methods, as previously described16. 
CHO cells expressing either human GLP-1R or human GCGR were dis-
pensed in assay buffer (Hanks balanced salt solution containing 0.1% 
BSA (Sigma-Aldrich) and 0.5 mM IBMX (Sigma-Aldrich)) in 384-well 
assay plates containing dilutions of test peptides. After 30 min of 
incubation, cAMP levels were measured using the cAMP dynamic 2 
HTRF kit (Cisbo) following the manufacturer’s recommendations. 
Fluorescence emissions at 665 nm and 620 nm following excitation at 
320 nm were detected using an Envision reader (Perkin Elmer), and the 
data were transformed to % Delta F, as described in the manufacturer’s 
guidelines, before EC50 determination. All in vitro cell-based assay data 
are presented as the mean of n ≥ 3 independent experiments, and all 
individual EC50 measurements were within threefold of the geometric 
mean. The native peptide reference standard potency was within three-
fold of the historical geometric mean for all assays.

Datasets
The GPCR-binding peptides considered in this work exclusively com-
prise naturally occurring amino acids, so the models are not able to cap-
ture the effect of any chemical modifications of residues. The initial set 
of sequences was aligned using MAFFT version 736 to reveal regularities 
in amino-acid occurrences across positions. We reasoned that sequence 
alignment might help structure the data, thereby increasing the pre-
dictive power of the neural-network models. The aligned sequences 
were truncated to L = 30 amino acids, and redundant sequences were 
removed. The final set of sequences used in this study comprised 
N = 125 unique peptide sequences tested against human GPCR and 
GLP-1R receptors. Within this dataset, 122 records were C-terminally 
amidated. The sequences were subsequently encoded using a one-hot 
representation and used to train various regression models.

Data encoding
To encode the amino acid at each sequence position we used a one-hot 
(binary) representation. Here, we considered 21 categories: 20 amino 
acids and the gap symbol ‘-’, introduced by alignment. Because nearly 
all peptides used in these studies (122/125) were C-terminally amidated, 
we did not introduce an additional parameter to encode this feature. 
In this approach, each peptide sequence of length L is converted to a 
binary matrix S of size 21 × L, the entries of which indicate the presence 
of an amino acid Ai at the given sequence site, such that Sab = 1 if a = i 
and 0 elsewhere, ∀b ∈ {1, …, L}. The binary matrix is then re-shaped into a 
vector: S21 × L → v1 × 21L. The alignment process ensures that L = 30 for all 
peptides, such that each sequence is represented by the binary vector 
v ∈ ℝ1×630.

Evaluation metrics
We employed the following commonly used regression metrics to 
evaluate the prediction accuracy of the models developed in this work.

	1.	 Root-mean-square error (r.m.s.e.): r.m.s.e. = √
1
N
∑N

i=1 ( yi − ̂y)2

	2.	 Mean absolute error (m.a.e.): m.a.e. = 1
N
∑N

i=1 | yi − ̂y|

	3.	 Coefficient of determination (R2): R2 = 1 − ∑N

i=1 ( yi− ̂y)2

∑N

i=1 ( yi− ̄y)2

Notation: yi, true value of the target for the ith sample; ̂y, predicted 
value of the target for the ith sample; ̄y, average value of the target; N, 
number of examples in the batch.

Neural-network model
We used the Keras/Tensorflow functional API to build the deep network 
model37. The first Conv1D layer in our model has 256 filters, a kernel 
window of three amino acids, without padding, and an L2 regularization 
penalty on the kernel, with weight = 0.01. The layer uses ReLU activa-
tion. We next added batch normalization and a MaxPool1D operation 
with stride 2 and used Dropout = 0.5. The second Conv1D layer contains 
512 filters and the same configuration of parameters as the first layer, 
with an additional L2 regularization penalty on the bias term, with 
weight = 0.01. The layer is activated with ReLU, followed by batch nor-
malization, MaxPool1D operation with stride 2, and Dropout = 0.5. The 
third convolutional layer has 128 filters; here the padding preserves the 
shape of the input, and the kernel as well as bias are regularized with 
L2. This layer is followed by MaxPool1D operation with stride 2. Next, 
the output from convolutional layers is flattened and two dense layers 
terminate the network. The first dense layer comprises 256 units, and 
the second layer has 64 units. Both layers are ReLU-activated. The final 
two dense layers with a single unit convert the model output to the 
prediction. These layers are not activated.

Network ensemble
We constructed a neural-network ensemble model where the final 
prediction is given by the average of the individual predictions made 
by M = 12 separate copies of the model. Different copies of the model, 
trained on the same data, differ in their predictions due to factors such 
as the random initialization of the network parameters. Ensembling 
predictions over several copies of the model has the effect of mitigating 
some of this randomness and reducing model variance. The resulting 
ensemble prediction is given by the average of the ensemble element 
predictions.

Model training and hyperparameter tuning
To adjust capacity and select non-trainable model parameters, the avail-
able data were used for performance validation. Initially, the dataset of 
125 examples was divided into three subsets: 105 training sequences, 
ten sequences for validation and ten held-out sequences for final model 
performance evaluation (unseen during training). We performed ten 
sixfold cross-validations splits with different seeds to split the data, 
obtaining 60 (test set size) × 10 = 600 data points (errors) in total for 
each model. Retraining on different data splits allowed us to take into 
account the variance resulting from training on different data, in addi-
tion to the variance that arises due to the random model initialization.

For each baseline model, we used the sklearn grid search (Grid-
SearchCV) to find the set of hyperparameters that provide the best 
cross-validation performance (listed in Supplementary Table 2). Param-
eters for which the optimal value differs between tasks are marked with 
a double value v1/v2 in the respective column of Supplementary Table 2, 
where v1 is the optimal parameter value for the GCGR task, and v2 is the 
optimal parameter value for the GLP-1R task. For the neural networks, 
various configurations of layers, unit numbers and regularization 
were tried, and we selected the model that gave the best performance 
on the validation set.

In addition, to prevent overfitting of the neural networks, we 
monitored performance using early stopping. Training was terminated 
when the optimization loss reported on the validation set goes up 
after a selected number of parameter updates. Here, we use the Early 
Stopping monitor implemented in the Keras call-back module38. Deep 
models with 120 training examples (final models) were trained for up 
to 1,500 epochs, monitoring the validation loss, with the patience of 
100 epochs. Each batch for the gradient step contained 25 samples. 
The deep models with 105 training examples used for validation were 
trained for up to 1,500 epochs, monitoring the validation loss with the 
patience of 75 epochs, and 20 examples per batch (each epoch had five 
parameter updates). Model training is illustrated in Supplementary 
Fig. 2.
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Baseline models
All baseline regressors in Table 1 were implemented using the sklearn 
Python module39. To confirm that the ML models do not simply learn 
the underlying potency distributions or amino-acid sequence compo-
sitions, we trained control ensembles of multi-task neural networks 
using the process described above, where we (1) shuffled each peptide 
sequence used to train the models and (2) shuffled the measured poten-
cies between training examples. The resulting control models make 
much larger prediction errors; the results are shown in Supplementary 
Fig. 4 and summarized in Supplementary Table 4. Finally, we imple-
mented a simple nearest-neighbours approach in which the predicted 
potency for a held-out test sequence is predicted by the measured 
potency of the nearest neighbour in the training data. For each test 
sequence we used the pairwise2 BioPython module with the BLOSUM62 
matrix to score alignments with every training sequence; in the case 
of multiple equidistant training sequences, the average potency was 
reported. Results across sixfold cross-validation are summarized in 
Supplementary Table 4 and show that this approach is outperformed 
by the ML models described above.

We used a t-test (two-sided) to test whether the differences in 
model performance were significant between the ensemble of 
multi-task neural networks and the other models. Distributions of 600 
prediction errors (squared difference between the true and predicted 
potency for each test sequence) obtained for each model for the GCGR 
and GLP-1R tasks are shown in Supplementary Table 3. For each pair of 
models we test the null hypothesis that the two independent popula-
tions of error samples have the same average values (we do not assume 
equal variances). Supplementary Table 3 shows that at a confidence 
level of 0.05, the multi-task neural-network ensemble performs signifi-
cantly better in all cases for the GLP-1R task, whereas the performance 
differences are insignificant in all except one case for the GCGR task.

Multi-task training
Multi-task learning aims to improve generalization and increase predic-
tion accuracy by learning objectives for several target variables from 
shared representations28. The basic idea is that by training all tasks 
using shared hidden layers, each task benefits from the presence of 
the others, which act as regularizers, making the model less sensitive 
to the specificity of a single target28,40. This is because the shared layers 
are shared representations—the model uses the same weights on each 
task. The effective number of training examples is therefore increased, 
and overfitting on each task separately is reduced by optimizing the 
model with respect to the average data noise40.

We used the Kereas deep-learning framework to build our model 
(https://keras.io) using the TensorFlow back-end37. The model consists 
of eight fully connected layers, comprising the input layer, followed 
by three 1D convolutional layers, three pooling layers and two dense 
layers at the bottom of the model, connected to two final units that 
convert the output to real-valued predictions. The overall objective is 
the weighted average of the loss for each of the two individual tasks:

Ltotal =
k=2
∑
i=1

αiLi (1)

where Li is the loss function of the ith task, αi is the corresponding 
weight and k denotes the number of tasks. We set α1 = α2 = 0.5 so that 
each loss contributes with equal weight to the overall loss. We use the 
mean-squared-error (m.s.e.) as the loss for each task, 
m.s.e. = 1

n
∑n

j=1 ( yj − ̂y)2, where n is the number of training examples per 
batch.

Our multi-task neural-network model shares all internal hidden 
layers between the tasks. Two output units return the predicted poten-
cies, ̂y1 and ̂y2. The convolutional layers at the top of the model are 
designed to encode the peptide representations. We use a kernel with 
a window size of three amino acids and stride equal to 1. Each 

convolutional layer is followed by a max pooling layer, with stride equal 
to 2. We use batch normalization41 and Dropout42 for regularization. 
Each convolutional and dense layer is activated with ReLU43 activation. 
We trained the model with an optimization objective as given in equa-
tion (1) using the Adam optimizer44. The final network was trained on 
an equal number of training examples for both tasks, N = 120.

Model-guided ligand design
Our goal was to design peptide sequences with the following properties:

•	 Highly active against both receptors:

Activity =
⎧⎪
⎨⎪
⎩

log10EC
GCGR
50 [M ] < −11.5

log10EC
GLP−1R
50 [M ] < −11.5

ECGCGR
50 /ECGLP−1R

50 ≈ 1

(2)

•	 Selectively active towards GCGR:

Activity =
⎧⎪
⎨⎪
⎩

log10EC
GCGR
50 [M ] < −11

log10EC
GLP−1R
50 [M ] > −9

ECGCGR
50 /ECGLP−1R

50 ≈ 100

(3)

•	 Selectively active towards GLP-1R:

Activity =
⎧⎪
⎨⎪
⎩

log10EC
GCGR
50 [M ] > −9

log10EC
GLP−1R
50 [M ] < −11.5

ECGLP−1R
50 /ECGCGR

50 ≈ 100

(4)

We use model-guided directed evolution, an optimization strategy 
that attempts to solve the optimization problem by imitating the natu-
ral evolutionary process. In each successive generation (iteration), a 
change in the sequence is proposed, followed by the evaluation of a 
fitness function (here, potency predicted by the ensemble of multi-task 
neural networks) and the best solutions are progressed to the next 
generation. This process repeats until a satisfactory solution is reached. 
In this work we assume that the ensemble of multi-task convolutional 
neural networks makes reliable predictions up to three mutation steps 
from the closest training-set analogue sequence.

We first generated all single-step mutations from each training-set 
sequence in the three groups of interest, removing any duplicates 
within the generated set, and any overlaps with the training set. Because 
each sequence in the initial alignment has a length of 30 amino acids 
and each position can be mutated to one of 19 amino acids (20 if the 
position is gapped), this gives 570 single-step mutants in the first gen-
eration for each sequence in the training set, that is, 71,304 sequences, 
reducing to 69,639 sequences after removing duplicates. We then used 
each model to select the 50 best sequences for each of the three target 
designs defined above, and selected the ten most diverse sequences 
as starting points for a second round of optimization. Note that in 
the first generation for the multi-task CNN only five candidate dual 
agonists were found and used as parents for the second generation. 
For the second generation we repeated the process described for the 
first generation, and from the 50 best sequences for each group, we 
selected five diverse sequences as parents for the third generation. The 
entire process was then repeated for a final generation, taking the 50 
sequences with the best predicted potencies within each of the three 
groups, considering GCGR for group one.

We identified six biophysical properties that can be predicted from 
a sequence using the ProtParam module (https://biopython.org/wiki/
ProtParam) from the biopython Python package45: (1) the isoelectric 
point in neutral pH, (2) GRAVY (grand average of hydropathy)46, (3) the 
instability index47, (4) aromaticity, (5) the molar extinction coefficient 
and (6) molecular weight. We compared the predicted value for each 
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designed peptide with the predicted properties of peptides in the 
training set within the same potency group. We ranked the 50 best 
sequences in each group by computing the number of features whose 
values are within one standard deviation of the mean calculated for the 
corresponding group of training-set sequences. As the last step of filter-
ing, we predicted the secondary structure for each final candidate using 
PSIPRED48 (http://bioinf.cs.ucl.ac.uk/psipred/) to confirm that the 
selected sequences are helical peptides. Using this ranking, we selected 
five final samples in each potency category—four from the third gen-
eration, and one from the first generation of mutants. We prioritized 
designed sequences with the smallest (first generation) and largest 
(third generation) distance from the training set. Sequences selected 
with the ensemble of multi-task neural-network models experimentally 
tested in this study and discussed in the main text are listed in Table 2 
(Supplementary Tables 7–11 provide additional details).

To examine the similarity of peptides predicted by different mod-
els within each potency profile, we used PCA, considering the 500 
one-hot-encoded sequences generated across all five compared mod-
els, the wild-type peptides—hGCG and hGLP-1—and their single-step 
mutants (551 hGCG and 570 hGLP-1), such that the projection was 
computed for an array [1,621 × 21L]. The projected data are shown in 
Supplementary Fig. 7. The selected final sequences listed in Supple-
mentary Table 6 were analysed in terms of the total number of muta-
tions from wild-type and predicted potencies. The predictions made 
with different models are consistent, as evidenced by the low values 
of standard deviation (<0.5) from the average prediction computed 
across the models.

To evaluate the information content generated by the sequence 
design process, we calculated the entropy across each set of designed 
sequences, and the relative entropy (Kullback–Leibler divergence, KL) 
between the distribution of amino acids at each sequence position 
estimated for the model-designed samples, and the training data. KL 
divergence is equal to zero if and only if the distribution of amino acids 
across the designed samples matches exactly the respective distribu-
tion of amino acids estimated from the training-set sequences. The rela-
tive entropy between two discrete distributions s(x) and t(x) is given by

KL(s||t) = −
21
∑
i=1

s(xi)log21
t(xi)
s(xi)

(5)

where xi is one of the 21 symbols at a selected position j. We also meas-
ured the dependence between model-generated samples and the 
training data using mutual information (MI). Given two alignment 
columns A and B, each with discrete distributions of amino acids, their 
MI can be calculated as

I(A; B) =
K=21
∑
i

L=21
∑
j

p(xi, yj)log21
p(xi, yj)

p(xi)p( yj)
= KL(p(a, b)||p(a)p(b)) (6)

where xi is one of the 21 symbols at position A, and yj is one of the 21 
symbols at position B. The MI describes the reduction of uncertainty 
about the amino acid at position i in our generated samples when we 
are told what the amino acid at position i in the training data is. The 
higher the value, the more dependent the variables.

Predicted properties of natural homologues
As described in the main text, we used our multi-task neural-network 
ensemble model to make predictions for natural GCG and GLP-1 
peptide orthologues that are found in various organisms, identi-
fied using BLASTp to search the NCBI RefSeq49 database to identify 
non-redundant proglucagon sequences from various organisms across 
diverse phylogenetic groups. In vertebrates, the pre-proglucagon 
polypeptide is a product of the GCG gene, which encodes four peptide 
hormones: glucagon, glucagon-like peptide-1, glucagon-like peptide-2 
and oxyntomodulin50. In humans, pre-proglucagon has 180 amino 

acids and is cleaved to yield proglucagon (158 amino acids), which 
lacks the N-terminal signalling sequence. Proglucagon is subsequently 
processed by the prohormone convertases 1, 2 and 350 to produce, 
among other products, the 29-amino-acid-long GCG (in human, posi-
tions 53–81, PSCK2) and the 30-amino-acid-long GLP-17−36 (positions 
98–127, PSCK1), which are the focus of this work.

We identified 450 initial records, which we aligned using MAFFT 
version 736 with default parameters to construct a multiple sequence 
alignment (MSA). We also removed duplicated sequence isoforms, 
leaving a single representative for each species. Columns with low 
occupancy (f < 30% amino acids) were also removed, leaving 294 unique 
samples, such that the final MSA contained 294 rows (species) and 179 
columns (positions). MSA regions corresponding to the human GCG 
sequence (positions 53–81) and the GLP-1 human sequence (posi-
tions 98–127) were extracted, yielding two sets of corresponding 
homologues. Species that lacked either a GCG or GLP-1 sequence in 
the alignment were further removed to yield two final peptide sequence 
sets, each comprising 288 orthologous sequences. The list of species 
and NCBI accession numbers, as well as the corresponding peptide 
sequences, are provided in Supplementary Tables 15 and 16.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this Article.

Data availability
All data used to build and validate models in addition to all peptide 
sequences designed and tested in this study are freely available for 
download from the code repository at https://github.com/amp91/
PeptideModels. Source data are provided with this paper.

Code availability
The pre-trained ensemble of deep multi-task neural-network models 
with weights used to draw the presented inferences, the code for the 
ensemble training, and the module for model-guided peptide sequence 
optimization together with all data used in this study are freely available 
for download from the online repository https://github.com/amp91/
PeptideModels. The repository contains IPython notebooks tutorials 
that demonstrate how to use the software.
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Extended Data Fig. 1 | Comparison between 15 model-designed compounds 
and the training data. Each panel shows a construct (P1 - P15, using the same 
notation as in the main text) as an array whose entries reflect the prevalence of 
each amino acid at specific position in the training set, according to the legend 

on the right side. Rarely occurring mutations - frequency in the training set lower 
than 0.2 - are indicated by the number. Black vertical stripes mark new sequence 
substitutions which do not occur in the training set.
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Extended Data Table 1 | Multi-task ensemble neural-network model predictions on independent literature data

The set of peptides containing natural amino acids for which GCGR and GLP-1R potencies were measured by Day et al.15. Here red highlighting indicates sequence mutations from the wild 
type of human glucagon sequence. The models reported in this paper were not trained on this data, and these sequences are all distinct from those contained in the set used to train our 
models. We compare the measured activity reported by the authors with predictions made by multi-task ensemble neural-network model developed in this work.
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Extended Data Table 2 | Predicted biophysical properties of designed peptides

Here MW is molecular weight in Daltons, pI is predicted iso- electric point, A is predicted aromaticity, II is predicted instability index (half-life), G is Grand Average of predicted Hydropathy 
(GRAVY) and M is predicted molar extinction coefficient. The properties were estimated with Prot-Param45. Peptide designs 6-11 are 30 amino acids long, while all other designed peptides 
contain 29 amino acids. The second column indicates the optimization step at which the sequence was collected: S1 denotes the 1st generation and S3 denotes the 3rd generation.
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 
was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 
off-target gene editing) were examined.

Plants


	Machine learning designs new GCGR/GLP-1R dual agonists with enhanced biological potency

	Results

	Training data

	Model training and evaluation

	Ligand design

	Prospective experimental validation

	Natural peptide analogues


	Discussion

	Online content

	Fig. 1 Building models that predict peptide potency at both GCGR and GLP-1R.
	Fig. 2 Low-dimensional representation of the training data.
	Fig. 3 Schematic representation of the model-guided ligand design directed evolution workflow.
	Fig. 4 Experimental evaluation of predictions.
	Fig. 5 Sequence and potency comparison between the designed peptides, the wild-type human GCG and GLP-1, and the training data.
	Extended Data Fig. 1 Comparison between 15 model-designed compounds and the training data.
	Table 1 Model performance evaluation using sixfold cross-validation to split the AstraZeneca experimental data and model validation using measurements for 19 peptides from Day et al.
	Table 2 Multi-task neural-network ensemble-predicted potencies of the 15 designed peptides are compared to their experimentally measured potencies against hGCGR and hGLP-1R (reported in pM).
	Extended Data Table 1 Multi-task ensemble neural-network model predictions on independent literature data.
	Extended Data Table 2 Predicted biophysical properties of designed peptides.




