Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A tetrahedral neptunium(V) complex


Neptunium is an actinide element sourced from anthropogenic production, and, unlike naturally abundant uranium, its coordination chemistry is not well developed in all accessible oxidation states. High-valent neptunium generally requires stabilization from at least one metal–ligand multiple bond, and departing from this structural motif poses a considerable challenge. Here we report a tetrahedral molecular neptunium(V) complex ([Np5+(NPC)4][B(ArF5)4], 1-Np) (NPC = [NPtBu(pyrr)2]; tBu = C(CH3)3; pyrr = pyrrolidinyl (N(C2H4)2); B(ArF5)4 = tetrakis(2,3,4,5,6-pentafluourophenyl)borate). Single-crystal X-ray diffraction, solution-state spectroscopy and density functional theory studies of 1-Np and the product of its proton-coupled electron transfer (PCET) reaction, 2-Np, demonstrate the unique bonding that stabilizes this reactive ion and establishes the thermochemical and kinetic parameters of PCET in a condensed-phase transuranic complex. The isolation of this four-coordinate, neptunium(V) complex reveals a fundamental reaction pathway in transuranic chemistry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis of 1-Np and 2-Np.
Fig. 2: Structures and spectroscopy of compounds.
Fig. 3: Comparative α-MO energy diagrams of 1-U and 1-Np.
Fig. 4: PCET reactivity of 1-Np.

Similar content being viewed by others

Data availability

X-ray data are available free of charge from the Cambridge Crystallographic Data Centre under reference ID nos. 2280905 (1-Np), 2280906 (2-Np) and 2280907 (Np-Cl). Additional spectroscopic and computational data are included in the supplementary data files. The source datasets generated and/or analysed during the current study, including computational coordinates/energies and processed spectroscopic data, have been deposited in the figshare database under accession code (ref. 51). Source data are provided with this paper.


  1. Dutkiewicz, M. S. et al. A terminal neptunium(V)–mono(oxo) complex. Nat. Chem. 14, 342–349 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. Brown, J. L. et al. A linear trans-bis(imido) neptunium(V) actinyl analog: NpV(NDipp)2(tBu2bipy)2Cl (Dipp = 2,6-iPr2C6H3). J. Am. Chem. Soc. 137, 9583–9586 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Eller, P. G., Malm, J. G., Swanson, B. I. & Morss, L. R. Reactions of hexafluorides of uranium, neptunium and plutonium with nitrogen oxides and oxyfluorides. Synthesis and characterization of (NO)[NpF6] and (NO)[PuF6]. J. Alloys Comp. 269, 50–56 (1998).

    Article  CAS  Google Scholar 

  4. Dutkiewicz, M. S. et al. Organometallic neptunium(III) complexes. Nat. Chem. 8, 797–802 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Asprey, L. B., Keenan, T. K., Penneman, R. A. & Sturgeon, G. D. Alkali fluoride complexes of pentavalent neptunium. Inorg. Nucl. Chem. Lett. 2, 19–21 (1966).

    Article  CAS  Google Scholar 

  6. Asprey, L. B. & Penneman, R. A. Fluorine oxidation of tetravalent uranium and neptunium to the pentavalent state. J. Am. Chem. Soc. 89, 172 (1967).

    Article  CAS  Google Scholar 

  7. Malm, J. G., Williams, C. W., Soderholm, L. & Morss, L. R. Preparation, chemical reactions and some physical properties of neptunium pentafluoride. J. Alloys Comp. 194, 133–137 (1993).

    Article  CAS  Google Scholar 

  8. Samulski, E. T. & Karraker, D. G. Some ethoxide compounds of neptunium. J. Inorg. Nucl. Chem. 29, 993–996 (1967).

    Article  CAS  Google Scholar 

  9. Rice, N. T. et al. Homoleptic imidophosphorane stabilization of tetravalent cerium. Inorg. Chem. 58, 5289–5304 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Rice, N. T. et al. Design, isolation and spectroscopic analysis of a tetravalent terbium complex. J. Am. Chem. Soc. 141, 13222–13233 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Rice, N. T. et al. Comparison of tetravalent cerium and terbium ions in a conserved, homoleptic imidophosphorane ligand field. Chem. Sci. 11, 6149–6159 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rice, N. T. et al. Spectroscopic and electrochemical characterization of a Pr4+ imidophosphorane complex and the redox chemistry of Nd3+ and Dy3+ complexes. Dalton Trans. 51, 6696–6706 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Otte, K. S. et al. Divergent stabilities of tetravalent cerium, uranium and neptunium imidophosphorane complexes. Angew. Chem. Int. Ed. 62, e202306580 (2023).

    Article  CAS  Google Scholar 

  14. Niklas, J. E., Studvick, C. M., Bacsa, J., Popov, I. A. & La Pierre, H. S. Ligand control of oxidation and crystallographic disorder in the isolation of hexavalent uranium mono-oxo complexes. Inorg. Chem. 62, 2304–2316 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Connelly, N. G. & Geiger, W. E. Chemical redox agents for organometallic chemistry. Chem. Rev. 96, 877–910 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976).

    Article  Google Scholar 

  17. Stein, B. W., Kozimor, S. A. & Mocko, V. in Plutonium Handbook: Nuclear Science and Materials Science (ed. Clark, D. L.) Ch. 42 (American Nuclear Society, 2019).

  18. Foster, J. P. & Weinhold, F. Natural hybrid orbitals. J. Am. Chem. Soc. 102, 7211–7218 (1980).

    Article  CAS  Google Scholar 

  19. Weinhold, F. & Landis, C. R. Valency and Bonding (Cambridge Univ. Press, 2003).

  20. Zubarev, D. Y. & Boldyrev, A. I. Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys. Chem. Chem. Phys. 10, 5207–5217 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Bader, R. F. W. Atoms in molecules. Acc. Chem. Res. 18, 9–15 (1985).

    Article  CAS  Google Scholar 

  22. Cremer, D. & Kraka, E. Chemical bonds without bonding electron density—does the difference electron-density analysis suffice for a description of the chemical bond? Angew. Chem. Int. Ed. 23, 627–628 (1984).

    Article  Google Scholar 

  23. O’Grady, E. & Kaltsoyannis, N. On the inverse trans influence. Density functional studies of [MOX5]n (M = Pa, n = 2; M = U, n = 1; M = Np, n = 0; X = F, Cl or Br). Dalton Trans. 2002, 1233–1239 (2002).

  24. Denning, R. G. Electronic structure and bonding in actinyl ions and their analogs. J. Phys. Chem. A 111, 4125–4143 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Minasian, S. G. et al. Determining relative f and d orbital contributions to M-Cl covalency in MCl62− (M = Ti, Zr, Hf, U) and UOCl5 using Cl K-edge X-ray absorption spectroscopy and time-dependent density functional theory. J. Am. Chem. Soc. 134, 5586–5597 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Kosog, B., La Pierre, H. S., Heinemann, F. W., Liddle, S. T. & Meyer, K. Synthesis of uranium(VI) terminal oxo complexes: molecular geometry driven by the inverse trans-influence. J. Am. Chem. Soc. 134, 5284–5289 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. La Pierre, H. S. & Meyer, K. Uranium-ligand multiple bonding in uranyl analogues, [L=U=L]n+ and the inverse trans influence. Inorg. Chem. 52, 529–539 (2013).

    Article  PubMed  Google Scholar 

  28. Lewis, A. J., Mullane, K. C., Nakamaru-Ogiso, E., Carroll, P. J. & Schelter, E. J. The inverse trans influence in a family of pentavalent uranium complexes. Inorg. Chem. 53, 6944–6953 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Köhler, L. et al. Insights into the electronic structure of a U(IV) amido and U(V) imido complex. Chem. Eur. J. 28, e202200119 (2022).

    Article  PubMed  Google Scholar 

  30. Wise, C. F., Agarwal, R. G. & Mayer, J. M. Determining proton-coupled standard potentials and X–H bond dissociation free energies in nonaqueous solvents using open-circuit potential measurements. J. Am. Chem. Soc. 142, 10681–10691 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Bruch, Q. J. et al. Dinitrogen reduction to ammonium at rhenium utilizing light and proton-coupled electron transfer. J. Am. Chem. Soc. 141, 20198–20208 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Lee, H. B., Britt, R. D. & Rittle, J. N–H bond dissociation free energy of a terminal iron phosphinimine. J. Coord. Chem. 75, 1804–1814 (2022).

    Article  CAS  Google Scholar 

  33. Warren, J. J., Tronic, T. A. & Mayer, J. M. Thermochemistry of proton-coupled electron transfer reagents and its implications. Chem. Rev. 110, 6961–7001 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Agarwal, R. G. et al. Free energies of proton-coupled electron transfer reagents and their applications. Chem. Rev. 122, 1–49 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Renshaw, J. C. et al. Bioreduction of uranium: environmental implications of a pentavalent intermediate. Environ. Sci. Technol. 39, 5657–5660 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Cologgi, D. L., Lampa-Pastirk, S., Speers, A. M., Kelly, S. D. & Reguera, G. Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism. Proc. Natl Acad. Sci. USA 108, 15248–15252 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lovley, D. R., Phillips, E. J. P., Gorby, Y. A. & Landa, E. R. Microbial reduction of uranium. Nature 350, 413–416 (1991).

    Article  CAS  Google Scholar 

  38. Hou, X., McLachlan, J. R. & Dares, C. J. Electrochemical behaviour of uranium at a tripolyphosphate modified ITO electrode. Chem. Commun. 57, 10891–10894 (2021).

    Article  CAS  Google Scholar 

  39. Dares, C. J., Lapides, A. M., Mincher, B. J. & Meyer, T. J. Electrochemical oxidation of 243Am(III) in nitric acid by a terpyridyl-derivatized electrode. Science 350, 652–655 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Hennig, C., Ikeda-Ohno, A., Tsushima, S. & Scheinost, A. C. The sulfate coordination of Np(IV), Np(V) and Np(VI) in aqueous solution. Inorg. Chem. 48, 5350–5360 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Bender, W. M. & Becker, U. Resolving the kinetics of individual aqueous reaction steps of actinyl (AnO2+ and AnO22+; An = U, Np and Pu) tricarbonate complexes with ferrous iron and hydrogen sulfide from first principles. Radiochim. Acta 108, 165–184 (2020).

    Article  CAS  Google Scholar 

  42. Faizova, R., Fadaei-Tirani, F., Chauvin, A.-S. & Mazzanti, M. Synthesis and characterization of water stable uranyl(V) complexes. Angew. Chem. Int. Ed. 60, 8227–8235 (2021).

    Article  CAS  Google Scholar 

  43. Faizova, R., Fadaei-Tirani, F., Bernier-Latmani, R. & Mazzanti, M. Ligand-supported facile conversion of uranyl(VI) into uranium(IV) in organic and aqueous media. Angew. Chem. 132, 6822–6825 (2020).

    Article  Google Scholar 

  44. Bots, P. et al. Neptunium(V) and uranium(VI) reactions at the magnetite (111). Surface Geosci. 9, 81 (2019).

    Article  CAS  Google Scholar 

  45. Collins, R. N. & Rosso, K. M. Mechanisms and rates of U(VI) reduction by Fe(II) in homogeneous aqueous solution and the role of U(V) disproportionation. J. Phys. Chem. A 121, 6603–6613 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Wander, M. C. F., Kerisit, S., Rosso, K. M. & Schoonen, M. A. A. Kinetics of triscarbonato uranyl reduction by aqueous ferrous iron: a theoretical study. J. Phys. Chem. 110, 9691–9701 (2006).

    Article  CAS  Google Scholar 

  47. Chatelain, L. et al. Terminal uranium(V)-nitride hydrogenations involving direct addition or frustrated Lewis pair mechanisms. Nat. Commun. 11, 337 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Keener, M., Scopelliti, R. & Mazzanti, M. Nitride protonation and NH3 binding versus N-H bond cleavage in uranium nitrides. Chem. Sci. 12, 12610–12618 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Perales, D. et al. Conversion of uranium(III) anilido complexes to uranium(IV) imido complexes via hydrogen atom transfer. Organometallics 41, 606–616 (2022).

    Article  CAS  Google Scholar 

  50. Nocera, D. G. Proton-coupled electron transfer: the engine of energy conversion and storage. J. Am. Chem. Soc. 144, 1069–1081 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. La Pierre, H. S. et al. Source data for calculations, UV-vis-NIR, and NMR for a tetrahedral neptunium(V) complex. figshare (2024).

Download references


We thank C. Windorff (NMSU) for his support during laboratory set-up and the initial transuranic synthesis. This material is based on work supported by the United States Department of Energy, Office of Science, Office of Basic Energy Sciences, Heavy Element Chemistry programme under award no. DE-SC0019385 (J.E.N., K.S.O. and H.S.L.P.) at the Georgia Institute of Technology. Computational work was conducted using the computational resources at the Ohio Supercomputer Center and the ARCC HPC cluster at the University of Akron (C.M.S. and I.A.P.), as well as at the University of South Dakota, supported by the United States Department of Energy, Office of Science, Office of Basic Energy Sciences, Heavy Element Chemistry programme under award no. DE-SC0023022 (S.R.C. and B.V.) and by the high-performance computing systems at the University of South Dakota, funded by the National Science Foundation under award no. OAC-1626516 (S.R.C. and B.V.).

Author information

Authors and Affiliations



J.E.N., K.S.O. and H.S.L.P. conceived the idea presented in this publication. H.S.L.P., I.A.P. and B.V. supervised the project and acquired funding. J.E.N., K.S.O. and H.S.L.P. developed the syntheses and performed the spectroscopic characterization. Crystallographic characterization was performed by K.S.O., J.E.N., H.S.L.P., J.B. and F.K. Theoretical calculations and analysis were performed by C.M.S., S.R.C., B.V. and I.A.P. Analysis and visualization were performed by J.E.N., K.S.O., C.M.S., S.R.C., I.A.P., B.V. and H.S.L.P. The first draft was written by J.E.N., K.S.O., C.M.S. and S.R.C., with contributions from all authors. The paper was reviewed and edited by H.S.L.P., I.A.P. and B.V., with input from all authors.

Corresponding authors

Correspondence to Ivan A. Popov or Henry S. La Pierre.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Valerie Vallet and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 Selected bond metrics for An5+ and An4+ species (An = Np, U)

Extended Data Fig. 1 PCET reactivity on the NMR timescale.

31P{1H} NMR spectra of 1-Np in THF-d8, prepared at t0 showing loss of 1-Np and ingrowth of 2-Np signals. Integration values are normalized to a sum of 1.0 and represent averages over independently processed and integrated data.

Extended Data Fig. 2 BDFE calculations.

Thermodynamic equations employed for calculating the N–H bond dissociation free energy of 2-Np through H atom transfer mediated by TEMPO-H.

Supplementary information

Supplementary Information

Supplementary Information (Experimental Details, Spectroscopic Data, Computational Details, References), Figs. 1–29 and Tables 1–13.

Supplementary Data 1

Crystallographic data for compound 1-Np; CCDC reference no. 2280905.

Supplementary Data 2

Crystallographic data for compound 2-Np; CCDC reference no. 2280906.

Supplementary Data 3

Crystallographic data for compound Np-Cl; CCDC reference no. 2280907.

Supplementary Data 4

DFT atomic coordinates.

Source data

Source Data Fig. 2

UV-vis-NIR source data for 1-Np at 8 mM and 0.1 mM.

Source Data Fig. 3

DFT single point energy calculations using an implicit solvent model of THF.

Source Data Fig. 4

31P NMR integration values at each time point and SD calculation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niklas, J.E., Otte, K.S., Studvick, C.M. et al. A tetrahedral neptunium(V) complex. Nat. Chem. (2024).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing