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Enabling late-stage drug diversification by 
high-throughput experimentation with 
geometric deep learning

David F. Nippa    1,2,6, Kenneth Atz3,6, Remo Hohler1, Alex T. Müller    1, 
Andreas Marx1, Christian Bartelmus    1, Georg Wuitschik    1, Irene Marzuoli    4, 
Vera Jost1, Jens Wolfard    1, Martin Binder1, Antonia F. Stepan    1, 
David B. Konrad    2 , Uwe Grether    1 , Rainer E. Martin    1  & 
Gisbert Schneider    3,5 

Late-stage functionalization is an economical approach to optimize the 
properties of drug candidates. However, the chemical complexity of drug 
molecules often makes late-stage diversification challenging. To address 
this problem, a late-stage functionalization platform based on geometric 
deep learning and high-throughput reaction screening was developed. 
Considering borylation as a critical step in late-stage functionalization, 
the computational model predicted reaction yields for diverse reaction 
conditions with a mean absolute error margin of 4–5%, while the reactivity 
of novel reactions with known and unknown substrates was classified with 
a balanced accuracy of 92% and 67%, respectively. The regioselectivity 
of the major products was accurately captured with a classifier F-score 
of 67%. When applied to 23 diverse commercial drug molecules, the 
platform successfully identified numerous opportunities for structural 
diversification. The influence of steric and electronic information on model 
performance was quantified, and a comprehensive simple user-friendly 
reaction format was introduced that proved to be a key enabler for 
seamlessly integrating deep learning and high-throughput experimentation 
for l at e- st age f un ct io na li zation.

Structural novelty and complexity render the synthesis of chemical  
target structures challenging when aiming to establish structure–activity  
relationships in medicinal chemistry1. Structure–activity relation-
ship models guide hit-to-lead and lead optimization programmes, 
aiming to improve the pharmacological activity and physicochemical 
properties of drug candidates2–4. For structure–activity relationship 
exploration, time-efficient synthesis is important because synthesis 

represents a bottleneck of the design–make–test–analyse cycle5.  
A number of synthetic methods for the selective activation and modifi-
cation of C–H bonds allow for the late-stage functionalization (LSF) of 
organic scaffolds, ranging from molecular building blocks to advanced 
drug molecules6. Numerous catalytic systems offer both, directed 
and non-directed methods, as well as chemo- and site-selective access 
to modified analogues. LSF methods in medicinal chemistry include 

Received: 21 October 2022

Accepted: 3 October 2023

Published online: 23 November 2023

 Check for updates

1Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland. 2Department 
of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany. 3Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 
Switzerland. 4Process Chemistry and Catalysis (PCC), F. Hoffmann-La Roche Ltd., Basel, Switzerland. 5ETH Singapore SEC Ltd, Singapore, Singapore. 
6These authors contributed equally: David F. Nippa and Kenneth Atz.  e-mail: david.konrad@cup.lmu.de; uwe.grether@roche.com;  
rainer_e.martin@roche.com; gisbert@ethz.ch

http://www.nature.com/naturechemistry
https://doi.org/10.1038/s41557-023-01360-5
http://orcid.org/0000-0002-0346-3786
http://orcid.org/0000-0001-8063-9952
http://orcid.org/0000-0002-1527-4325
http://orcid.org/0000-0001-6682-1213
http://orcid.org/0000-0001-7536-6144
http://orcid.org/0000-0001-7338-4103
http://orcid.org/0000-0003-2203-129X
http://orcid.org/0000-0001-5718-8081
http://orcid.org/0000-0002-3164-9270
http://orcid.org/0000-0001-7895-497X
http://orcid.org/0000-0001-6706-1084
http://crossmark.crossref.org/dialog/?doi=10.1038/s41557-023-01360-5&domain=pdf
mailto:david.konrad@cup.lmu.de
mailto:uwe.grether@roche.com
mailto:rainer_e.martin@roche.com
mailto:gisbert@ethz.ch


Nature Chemistry | Volume 16 | February 2024 | 239–248 240

Article https://doi.org/10.1038/s41557-023-01360-5

various machine learning methods developed for chemical reaction 
planning23,29,30, GNNs have been successfully employed for retrosynthe-
sis planning, regioselectivity prediction and reaction product predic-
tion31–34. In addition, transformers and fingerprint-based methods were 
developed to tackle similar problems35,36. Other studies have shown 
that learning the activation energies of transition-state geometries 
yields accurate predictions for competing reaction outcomes37–39. 
Graph featurization with density functional theory (DFT)-level atomic 
partial charges improved the prediction of regioselectivity for reac-
tions driven by electronic effects40. The combination of graph machine 
learning with HTE enabled the optimization of reaction conditions 
for the C–H activation of organic substrates41. Recently, a GNN-based 
approach for predicting late-stage alkylation opportunities has been 
published, mainly focusing on Baran-type diversinate chemistry using 
alkyl sodium sulfinate salts42. Several studies have focused on deep 
learning models using transition states with the capability of predicting 
reaction outcomes, including, in some cases, enantioselectivity43–45. 
However, these approaches are limited to small molecular structures 
and comparably small datasets, rendering the application of such 
models to structurally more intricate drug-like molecules challeng-
ing46. A recent study has shown that hybrid machine learning models 
augmented with the quantum chemical information of transition states 
enable regioselectivity predictions for iridium-catalysed borylation 
reactions47. Importantly, the influence of steric and electronic effects 
on the model performance for C–H activation reactions and their 
application to regioselectivity for molecules with multiple aromatic 
ring systems remains unexplored.

Here we introduce a geometric deep learning approach applied 
to automated LSF borylation screening for identifying late-stage hits 

fluorination, amination, arylation, methylation, trifluoromethyla-
tion, borylation, acylation and oxidation7. Among these methods, 
C–H borylation is considered the most versatile for rapid compound 
diversification. Organoboron species can be transformed into an array 
of functional groups and serve as a robust handle for subsequent C–C 
bond couplings (Fig. 1a), which enables broad structure–activity rela-
tionship studies8–10.

However, only a few applications of LSF in drug discovery have 
been reported to date11,12. Most of these rare examples focus on a single 
LSF reaction type13–15. Multiple functional groups and various types 
of C–H bonds with different bond strengths, electronic properties 
and steric and functional group environments pose challenges for 
straightforward LSF; thus, generalizing guidelines for reactivity and 
selectivity predictions should be applied with caution11. Consequently, 
running a successful LSF campaign often requires time-consuming 
and resource-intensive experimentation, which is not compatible with 
the tight timelines and limited assets of many medicinal chemistry 
projects.

High-throughput experimentation (HTE) is an established 
approach for reaction optimization16–18, enabling semi-automated 
miniaturized low-volume screenings to rapidly and reproducibly 
perform multiple transformations in parallel with small amounts of 
precious building blocks and consumables19–21. In combination with 
FAIR (Findability, Accessibility, Interoperability, Reusability)22 docu-
mentation, which generates high-quality datasets on successful and 
failed reactions23,24, HTE provides a foundation to unlock LSF for drug 
discovery by enabling advanced data analysis and machine learning.

Graph neural networks (GNNs) have seen broad applications in 
molecular feature extraction and property prediction25–28. Among the 
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Fig. 1 | Borylation diversification opportunities and research overview of 
the study. a, Late-stage borylation of a drug molecule. The example illustrates 
mono-borylated Loratadine (1a), which can be accessed through borylation 
of the drug Loratadine (1). Borylation provides the opportunity for rapid and 
broad diversification, aiming to study structure–activity relationships and 
improve pharmacokinetic and pharmacodynamic properties. Note that the eight 
potential post-functionalization modifications shown are for demonstration 
purposes only; these transformations were not carried out in the presented 
research. b, Overview of the research study. A comprehensive literature study 
provided a manually curated, high-quality literature dataset containing 1,301 

reactions extracted from 38 publications. The dataset was used to identify 
suitable borylation reaction conditions for HTE and used for machine learning. 
The LSF informer library resulted from a cluster analysis of 1,174 approved drug 
molecules. In total, 23 drugs from the LSF informer library, 12 relevant fragments 
and 5 simple substrates were subjected to HTE to deliver 956 experimental data 
points. Both experimental and literature data provided the basis for geometric 
deep learning using different GNNs, including 2D and 3D information and atomic 
partial charges. Prediction models for substrate reactivity, reaction yields and 
regioselectivity were developed, and the results are shared in this study.
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and lead diversification opportunities (Fig. 1b). Computational deep 
learning was employed for predicting reaction outcomes, yields and 
regioselectivity for the LSF of complex drug molecules. In the first step 
of this study, a comprehensive analysis of the published literature was 
performed to provide a rationale for selecting suitable reaction condi-
tions for HTE screening and relevant substrates reflecting the nature 
of late-stage lead compounds in drug discovery. Reaction conditions 
were chosen from manually curated literature data based on 38 selected 
publications (the literature dataset). LSF substrates were chosen based 
on a cluster analysis of 1,174 approved drugs, resulting in 23 structur-
ally diverse drug molecules. This approach enabled us to work with 
relevant examples of reaction conditions and substrates in an ‘informer 
library’ approach (that is, an approach involving a chemical space tai-
lored to the assessment of a synthetic methodology) rather than using 

idealized substrates and fragments with limited applicability to lead 
optimization48. In the second step of the study, semi-automated HTE 
was used for data generation (the experimental dataset). The reaction 
data for the selected drug molecules and reaction conditions provided 
high-quality data for subsequent machine learning of the reaction 
outcomes. Finally, different GNNs were trained on two-dimensional 
(2D), three-dimensional (3D) and atomic-partial-charge-augmented 
molecular graphs, to predict binary (yes/no) reaction outcomes, reac-
tion yields and regioselectivity.

Results
High-throughput experimentation
Using a HTE set-up and liquid chromatography–mass spectrometry 
(LCMS) coupled to a reaction data analysis pipeline, 23 drug compounds 
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Fig. 2 | Screening plate overview and GNN architecture. a, Schematic of the 24-
well borylation screening plates (columns: 1–6, rows: A–D) that were used in the 
experiments. One catalyst (2), one boron source (3), six ligands (4–9) and four 
solvents (10–13) were screened for all starting materials. B2Pin2, bis(pinacolato)
diboron; CyHex, Cyclohexane; [Ir(COD)OMe]2, (1,5-cyclooctadiene)(methoxy)
iridium(I) dimer. b, Baseline model composed of a feed-forward neural network, 
using the molecular descriptor ECFP4 and the reaction conditions as input. 
Multilayer perceptron (MLP) modules are highlighted in orange, and the output 
is in blue. This baseline model was applied for the prediction of reaction yield 
and binary reaction outcomes. c, The molecular graph is featured with 2D or 

3D information, with or without atomic partial charges (Methods for details 
on atom featurization). After passing the atomic features through a first MLP, 
the atomic features are updated via three 2D or 3D message-passing layers. 
Subsequently, the learned atomic features are either transformed directly to 
the regioselectivity output, or pooled via sum pooling or multi-head attention-
based pooling operations to obtain a whole-molecule feature space. This 
learned molecular feature space is then combined with the embedded features 
of the reaction conditions (Methods for details on condition featurization) and 
transformed to the reaction output (reaction yield, binary reaction outcome) via 
a final MLP.
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(1, 14, 16–36; structures of all compounds are in the Supplementary 
Information (Supplementary Section 3 and Supplementary Figs. 3 and 
4)) and 12 drug-like fragments (37–48; Supplementary Section 3 and 
Supplementary Fig. 5) were screened using the plate layout depicted in 
Fig. 2a. Herein, the ensemble of the selected 23 drug compounds and 12 
drug-like fragments is referred to as the LSF informer library. The 24-well 
borylation screening plate was designed based on a comprehensive 
literature assessment that delivered 1,301 reactions for meta-analysis. 
A detailed description of this approach is provided in the Methods.

In addition to the LSF informer library, a small subset of five fre-
quently occurring literature substrates (49–53; Supplementary Section 
3 and Supplementary Fig. 5) was screened by applying the borylation 
conditions. In total, a dataset containing the conditions and results 
of 956 reactions was obtained. LCMS measurement, followed by data 
analysis, enabled the determination of (1) binary (yes/no) reaction 
outcomes, that is, whether the conditions in combination with the 
individual substrates resulted in the desired mono- or di-borylated 
products, as well as (2) reaction yields, providing information about the 
amount of the desired reaction product. A protocol for visualizing the 
reaction outcome was implemented in the data analysis pipeline, which 
expedited the identification of starting points for suitable scaled-up 
procedures. Running selected reactions on larger scales indicated 
that individual conditions from the miniaturized HTE screenings can 
be adapted to produce sufficient material for biological tests or fur-
ther post-borylation modification. In addition, the scale-up reactions 
enabled the determination of isolated yields and elucidation of the 
exact structure by nuclear magnetic resonance (NMR) spectroscopy 
and high-resolution mass spectrometry (HRMS) of a set of selected 
compounds (1, 25, 29, 37–39 and 45). These analyses generated a 
high-quality experimental dataset containing information on the 
binary reaction outcomes, reaction yields and regioselectivity, which 
served as the basis for the geometric deep learning platform.

Geometric deep learning
The geometric deep learning platform introduced in this study con-
sists of a set of different GNNs tailored to learn three targets: binary 
reaction outcome, reaction yield and regioselectivity. Three different 
model architectures were investigated, and four different molecular 
graph representations were evaluated for each architecture (Fig. 2c).

•	 Architectures. For the reaction tasks (binary reaction outcome, 
reaction yield), two network architectures were investigated: a 
GNN using sum pooling and a graph transformer neural network 
(GTNN) using graph multiset transformer-based pooling49. For 
regioselectivity, an atomistic GNN (aGNN), which learns directly 
from atomic features, was employed.

•	 Molecular graphs. To quantify the influence of steric (3D) and elec-
tronic (quantum mechanical (QM)) effects, the input molecular 
graph was featured using 3D- and QM-augmented information, 
resulting in four different molecular graphs per neural network: 
2D, 3D, 2DQM and 3DQM.

The various combinations resulted in eight different GNNs for 
each of the reaction tasks (binary reaction outcome and reaction yield) 
and four for regioselectivity (Table 1). For the reaction tasks, a baseline 
neural network was investigated using the well-established extended 
connectivity fingerprint (ECFP (ref. 50); Fig. 2b).

Reaction yield and reaction outcome
Eight different GNNs and the baseline method, ECFP4NN, were  
optimized to predict reaction yields and binary reaction outcomes.

The performance of the reaction yield predictions was investigated 
on a randomly split dataset to learn reaction yields for known substrates 
in combination with new conditions for the experimental dataset.  
Figure 3a shows a scatter plot of the predictions of the best-performing 
neural network, GTNN3DQM, achieving a mean absolute error (m.a.e.) 
of 4.23 ± 0.08% and a Pearson correlation, r, of 0.890 ± 0.01. Figure 3d 
(left) shows a comparison of the nine different neural networks for this 
task. The four GTNNs (4.23–4.53% m.a.e.) achieved considerably higher 
accuracy than the ECFP4NN baseline (4.55% m.a.e.) and the four GNNs 
(4.88–5.61% m.a.e.). For reaction yield prediction, atomic charges as 
well as 3D information did not influence the performance of either the 
GTNNs or GNNs. GTNN models trained on the literature dataset achieve 
substantially higher errors with m.a.e. values of 16.15–16.73% and a cor-
relation between r = 0.59 and r = 0.62 (Supplementary Section 9.2 for 
details). The observation of lower errors for reaction yield predictions 
for HTE data compared to literature data is in line with recent findings51.

Binary reaction outcomes were considered ‘successful’ if the 
reaction condition with the chosen substrate yielded a mono- or 
di-borylation product that could be confirmed by LCMS with a corre-
sponding conversion of ≥1%, or ‘unsuccessful’ if the desired transfor-
mation was not traceable with LCMS. For the machine learning models 
trained on binary reaction outcomes, two different dataset splits were 
investigated: (1) a random split to investigate the performance on new 
conditions for known substrates; and (2) a substrate-based split for 
the 23 drug molecules to investigate the performance on unknown 
substrates with different conditions. First, the binary reaction outcome 
prediction was evaluated for random data splits (that is, predicting 
reaction outcomes for novel reaction conditions on known substrates). 
Figure 3d (centre left) shows a comparison of the nine different neural 
networks developed for this task. For the binary reaction outcome as 
observed for reaction yield prediction, a similar trend can be perceived; 
that is, GTNNs slightly outperformed (90.9–91.8% area under receiver 
operating characteristic curve, AUC) the ECFP4NN model (89.3% AUC) 
and GNN model (87.5–89.1% AUC), and the augmentation with atomic 
partial charges as well as 3D information did not affect the performance 
of the models (Table 1). Figure 3b shows a confusion matrix that is 
observed for predictions with a binary threshold of ≥1%. Models with 

Table 1 | Model performance of the GNNs

Reaction yield  
r value

Reaction 
yield  
m.a.e. (%)

Binary 
reaction 
outcome 
(random 
split), AUC (%)

Binary 
reaction 
outcome 
(substrate 
split), AUC (%)

GTNN2D 0.896 ± 0.006 4.53 ± 0.09 91.8 ± 2.1 52 ± 2

GNN2D 0.866 ± 0.005 5.61 ± 0.06 87.5 ± 1.0 51 ± 2

GTNN3D 0.884 ± 0.01 4.51 ± 0.11 91.4 ± 0.7 58 ± 4

GNN3D 0.877 ± 0.001 5.33 ± 0.34 89.4 ± 0.8 65 ± 5

GTNN2DQM 0.898 ± 0.003 4.41 ± 0.17 90.9 ± 1.5 53 ± 5

GNN2DQM 0.876 ± 0.01 5.41 ± 0.10 89.0 ± 1.1 59 ± 5

GTNN3DQM 0.890 ± 0.01 4.23 ± 0.08 91.8 ± 0.9 67 ± 2

GNN3DQM 0.890 ± 0.006 4.88 ± 0.24 89.1 ± 0.9 64 ± 4

ECFP4NN 0.885 ± 0.0006 4.55 ± 0.14 89.3 ± 1.3 52 ± 3

F-score (%) PVV (%) TPR (%) Accuracy (%)

aGNN2D 38 ± 5 56 ± 1 30 ± 6 88 ± 1

aGNN2DQM 39 ± 2 54 ± 2 30 ± 3 88 ± 0.3

aGNN3D 59 ± 3 62 ± 2 56 ± 4 90 ± 1

aGNN3DQM 60 ± 4 62 ± 2 59 ± 6 90 ± 1

The top of the table shows the model performance of the nine investigated neural networks, 
predicting binary reaction outcomes and reaction yields. Pearson correlation coefficient (r) 
and m.a.e. values were used to quantify reaction yield predictions. Balanced accuracy (AUC) 
was used to quantify binary reaction outcome predictions. The bottom of the table shows 
the model performance of the four different aGNNs for regioselectivity prediction in terms of 
F-score, PPV, TPR and accuracy. The numbers represent mean and standard deviation for N = 3 
independent neural network runs. The numbers in bold indicate the best performance for 
each of the individual metrics.
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additional binary thresholds of >5%, >10% and >20% were developed 
(Supplementary Section 9.3), achieving similar accuracy (AUC for 
1% threshold, 94.5 ± 0.2%; 5% threshold, 94.5 ± 0.2%; 10% threshold, 
95.6 ± 0.3%; and 20% threshold, 94.4 ± 0.2%).

Furthermore, the binary reaction outcome prediction was evalu-
ated for substrate-based data splits (that is, predicting reaction out-
comes for novel substrates). For 20 of the 23 unseen drugs, GTNN3DQM 
achieved an accuracy greater than 50%; for 16 of the 23 unseen drugs, 

an accuracy greater than 80% was obtained. Overall, the GTNN3DQM 
model exhibited an AUC value of 67 ± 2% (Table 1). Figure 3d (centre 
right) shows a comparison of the nine different neural networks for 
this task, indicating a better performance for the GNNs trained on 3D 
graphs (58–67% AUC) in comparison to the ECFP4NN (52% AUC) and 
the GNNs and GTNNs trained on 2D graphs (51–59% AUC). Furthermore, 
augmentation with atomic partial charges did not show improvements 
for GNNs or GTNNs. Figure 3e shows three drugs (1, 25, 29) and three 
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dataset, n = 239); balanced accuracy (centre left; AUC) as a percent on the binary 
reaction outcome prediction using the random dataset split (experimental 
dataset, n = 239); AUC as a percent on the binary reaction outcome prediction 
using the substrate-based dataset split (centre right; experimental dataset, 
n = 239); and the performance of the four aGNNs for regioselectivity prediction 
measured in terms of F-score (right; literature dataset, n = 164). e, Selected 
examples of validated borylation opportunities as predicted by the best-
performing neural network (GTNN3DQM) binary reaction outcomes of unseen 
substrates for three drugs (1, 25, 29) and three fragments (37, 38, 45).
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fragments (37, 38, 45) that were predicted by GTNN3DQM to yield 
successful reaction outcomes for unseen substrates. The main reac-
tion products of these six substrates were isolated with reaction yields 
ranging from 5% to 90% (Supplementary Section 11 for experimental 
details).

Regioselectivity
Four different aGNN models were developed for regioselectivity predic-
tion by training the neural networks computed for all non-quaternary 
carbons in a given molecule to determine whether the reaction will 
occur. As borylation reactions regularly occur at one atom or, in rare 
cases, at two atoms in a molecule, the atomic labels ‘reactive’ and 
‘non-reactive’ in a molecule are unbalanced (approximately 1:6). 
Therefore, the F-score (that is, the mean of positive predictive value 
(PPV) and true positive rate (TPR)) was used as a measure of neural 
network accuracy.

Figure 3d (right) shows the performance of four aGNNs trained 
on the literature dataset. The aGNNs trained on 3D graph structures 
outperformed those trained on 2D graph structures (Table 1 shows 
the exact numbers). The graph structures that included atomic partial 
charges did not appear to improve the prediction accuracy of the net-
works compared to their 2D and 3D equivalents. The aGNN3DQM model 
was the best-performing model overall, with an F-score of 60 ± 4%.  
Figure 4c shows six selected predictions of the test set using 
aGNN3DQM; on the left side, three reactions from the top 20% are 
shown, and on the right side, three molecules from the bottom 20% of 
the test set are shown. Figure 3c features the confusion matrix of the 
aGNN3DQM predictions on the test set. For the 1,259 non-quaternary 
carbons in the test set, aGNN3DQM achieved an accuracy of 90 ± 1%, 
a PPV of 62 ± 2% and a TPR of 59 ± 6%. Table 1 lists the accuracy, PVV 
values, TPR values and F-scores of the four aGNN models. The aGNNs 
trained on 2D graph structures yielded a similar false positive rate (that 
is, similar PPV), but a much higher false negative rate (that is, lower TPR) 
than the aGNNs trained on 3D graph structures.

The regioselectivity prediction method aGNN3D was trained 
and subsequently validated on the literature dataset. Test set pre-
dictions revealed many accurate examples (Fig. 4a; 54, 55) but also 
pointed to certain limitations of the computational model (Fig. 4a; 
56, 57). For additional testing, aGNN3D was retrospectively applied 
to out-of-distribution reactions containing substrates outside of the 
literature dataset found in Roche Medicinal Chemistry legacy pro-
jects (Fig. 4b). The model predicted three potential sites of reaction 
for morpholine 45, two of which were experimentally confirmed. For 
carbamate 64, the correct site of borylation and one false positive site 
were predicted. The aGNN3D model was then prospectively validated 
using six selected borylation reactions of the drugs Loratadine (1), war-
farin (25) and nevirapine (29), and three fragments (37, 38, 39; Fig. 4c).

The prediction model achieved approximately 70% accuracy in 
this experiment. Five of seven experimentally observed borylation 
sites were correctly predicted by the model. Figure 4c illustrates the 
six predictions compared to the isolated and characterized prod-
ucts obtained through the scaled-up reactions of the best-observed 

screening conditions. For fragments 37 and 38 and the drug nevirapine 
(29), the model predicted only one site of borylation. The predicted 
sites were experimentally confirmed, and neither false positive nor 
false negative predictions were observed. For Loratadine (1), aGNN3D 
predicted two potential reaction sites. The predicted mono-borylation 
product 1a was isolated, and the regioselectivity prediction was con-
firmed. For the second predicted species, the exact position of the 
two pinacol esters on Loratadine (1) could not be directly confirmed 
by NMR, but the respective mass was confirmed by HRMS. Product 1b 
was consequently subjected to hydrolysis to obtain the correspond-
ing phenol 1c (Supplementary Section 11). The analysis revealed that 
the second prediction was incorrect. For warfarin (25), aGNN3D 
predicted two potential reaction sites, scoring 93 ± 5% and 48 ± 1%. 
Mono-borylation of the C–H bond with the most confident prediction 
(93%) was experimentally confirmed. For fragment 39 the regioselectiv-
ity model did not suggest that borylation occurs, but mono-borylation 
was observed during the screening, and a scale-up was conducted. This 
analysis revealed that 39 in fact underwent mono-borylation of the 
methyl group to deliver 39a.

Finally, we investigated the influence of substitutions with dif-
ferent steric hindrances and electronic effects on the regioselectivity 
predictions. The aGNN3D model was applied to six unseen examples 
from the literature test set that introduce steric hindrance or directing 
functional groups. Figure 4d illustrates the regioselectivity predictions 
for four indole derivatives. Placing a directing amide functionality in 
position 1 yielded a prediction of 99 ± 0% at position 7 (Fig. 4d). Substi-
tuting the directing amide functionality with a bulky triisopropylsilane 
blocks position 7 and therefore yielded a score of 41 ± 7% for position 
3 (Fig. 4d). Furthermore, blocking position 3 with a cyano group and 
keeping the triisopropylsilane in position 1 in place yielded a prediction 
score of 96 ± 2% for position 5 (Fig. 4d). For a directing keto functional-
ity at position 3, a score of 84 ± 3% was obtained for position 4 (Fig. 4d, 
right). Figure 4d illustrates the regioselectivity predictions for two 
thiophene derivatives. Placing a directing secondary amide function-
ality at position 2 shows a slight preference at position 3 with a score 
value of 40 ± 1% (Fig. 4d). Replacing the directing secondary amide at 
position 2 with a bulky tertiary amide shifts the high score (72 ± 5%) to 
position 5 (Fig. 4d). For all of these examples, the highest prediction 
is in line with observed mono-borylations in the literature52–55. These 
results conclude that the regioselectivity prediction model aGNN3D 
successfully considers steric and electronic substituent effects.

Discussion
Curated high-quality reaction data are key drivers of successful deep 
learning. The results of this study were obtained using two FAIR data-
sets (that is, literature and experimental) containing 1,301 and 956 
reactions, respectively. To lower the barrier to sharing reaction data, 
we developed a comprehensive reaction data format (SURF, simple 
user-friendly reaction format) that allows for FAIR data capture. A 
detailed description of the SURF structure and data templates is pro-
vided in Supplementary Section 7. SURF complements similar initia-
tives, such as the open reaction database (ORD) and unified data model 

Fig. 4 | Selected examples from the borylation regioselectivity prediction. 
a–d, For each transformation, the predicted regioselectivity is shown on the left, 
and borylation including the reported reaction conditions and experimentally 
validated regioselectivity are shown on the right. The percentages for the 
regioselectivity predictions were generated by aGNN3D through the mean and 
standard deviation on ten individual conformers. Every prediction resulted in a 
value between zero and one, where one was set to 100%. a, Retrospective results 
obtained from the test set of the literature dataset. Results for two reactions 
from the top 20% (54, 55) and bottom 20% (56, 57) of the predictions from the 
literature dataset. b, Retrospective results obtained from out-of-distribution 
reactions from Roche legacy projects. Validation is shown for two molecules 
(45, 64). c, Prospective experimental validation of regioselectivity prediction 
models that were trained on the literature dataset. Validation is shown for three 

drugs, Loratadine (1), warfarin (25) and nevirapine (29), and three fragments, 
37, 38 and 39. d, Influence of steric hindrance and directing functional groups 
on regioselectivity prediction for six selected examples from the test set of the 
literature dataset. Regioselectivity predictions of indole derivatives (65–68) and 
thiophene derivatives (69, 70). The numbering of the shown indole molecule 
starts with 1 for the nitrogen atom and proceeds around the carbons in the 
ring, numbering the carbon atoms 2–7. DCM, dichloromethane; BBr3, boron 
tribromide; dtbbpy, 4,4′-di-tert-butyl-2,2′-dipyridyl; byp1A, 1-(2-([2,2′-bipyridin]-
5-yl)phenyl)-3-cyclohexylurea; byp, bi-pyridine; Cy, cyclohexane; HPin, 
pinacolborane; [Ir(COD)OMe]2, (1,5-cyclooctadiene)(methoxy)iridium(I) dimer; 
phen, 1,10-phenanthroline; tmphen, 3,4,7,8-tetramethyl-1,10-phenanthroline;  
N2, nitrogen.
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(UDM)56,57. It was developed to enable scientists to store and share 
reaction data in an easily editable format. High-quality literature data 
and newly generated experimental reaction data have enabled in silico 
estimation of reaction outcomes and reaction selectivity. The resulting 
geometric deep learning platform has been shown to correctly predict 
the reaction outcome for six substrates, and their main products were 
isolated (Supplementary Section 11). This approach represents a tool for 
identifying late-stage modifications of advanced drug-like molecules 
before initiating resource-intensive synthesis.

Two GNN architectures were implemented to predict the reaction 
tasks (binary reaction output and reaction yield). The two models, GNN 
and GTNN, differ only in their pooling operations. Whereas the GNN 
uses sum pooling, the GTNN relies on more complex graph multiset 
transformer-based pooling. This additional flexibility of the GTNNs 
slightly improved the reaction yield prediction but did not lead to 
increased prediction performance for binary reaction outcomes. This 
result suggests that greater neural network flexibility may lead to 
improved prediction accuracy for certain reaction prediction tasks 
but does not offer a general advantage.

The best-performing neural network model for reaction yield 
prediction (GTNN3DQM) achieved a m.a.e. of 4.23 ± 0.08% with a Pear-
son correlation of r = 0.890 ± 0.01 on the experimental dataset (Table 
1), whereas the most accurate model for literature data prediction 
(GTNN2DQM) achieved a m.a.e. of 16.11 ± 0.02% with r = 0.61 ± 0.01 
(Supplementary Section 9.2 for details). This disparity can be explained 
by the heterogeneity and quality of the two datasets. The experimental 
data were generated in the same laboratory using the same equip-
ment for syntheses and analyses and included the same standard for 
determining the reaction yield in all experiments. Furthermore, the 
experimental dataset covers a less diverse reaction parameter space 
(that is, 24 versus 864 possible conditions per substrate), thereby 
facilitating the learning task. By contrast, the reaction outcomes in the 
literature dataset originate from a variety of experiments performed 
in different laboratories that used different methods for determining 
the yield (for example, isolated yield, reaction conversion assessed by 
NMR, LCMS). Standardized, chemically diverse, high-quality datasets 
will be beneficial for building accurate machine learning models that 
enable further optimization of reaction conditions for LSF.

Importantly, the incorporation of steric information via 3D 
molecular graphs led to improved neural network performance for all 
investigated tasks, ranging from small enhancements in reaction yield 
prediction (m.a.e., 4.2% versus 4.4%) and binary reaction outcomes 
(AUC, 67% versus 59%) to substantial improvements in regioselectivity 
predictions (F-score, 60% versus 39%). Implementing partial charges 
generated with DFT accuracy into neural networks did not exhibit any 
improvements in all investigated tasks. However, the explored boryla-
tion reactions are mainly guided by steric effects and, to a lesser extent, 
electronic effects58,59, which could explain these observed effects. 
Incorporating the local 3D geometry considerably improved regiose-
lectivity predictions from 38 ± 5 for the best-performing 2D model 
to 60 ± 4% for the best-performing 3D model. These observations 
demonstrate the relevance of the local geometries and the additional 
information provided by 3D graphs for reactivity prediction on the 
level of individual atomic environments.

Regioselectivity predictions on the literature data delivered 
accurate results for the majority (90%) of the cases. The four selected 
and validated substrates from the experimental dataset highlight the 
reaction biases in the literature data used for model training. Specifi-
cally, the majority of the borylations captured in the literature dataset 
occur at sp2 carbons on substrates with no more than two ring systems. 
Substrates that fulfil these characteristics, such as fragments 37 and 
38, are predicted correctly. However, substrates outside of this scope, 
including the sp3-carbon borylation on fragment 39 or the di-borylation 
on the annulated pentadecanyl moiety in Loratadine (1), exploit the 
limitations of the available literature data. These results conclude that 

small datasets, such as the presented 1,301 reactions from the literature 
in this study, are sufficient for predicting regioselectivity with GTNNs 
on substrates similar to the ones covered by the chemical space in the 
literature. However, to predict regioselectivity in a trustworthy manner 
for a broader chemical space including larger molecules and potentially 
also sp3 borylations, further training data will be required.

The LSF informer library containing 23 structurally diverse, 
approved drugs (1, 14–36) complemented with 12 fragments (37–48) 
and five idealized substrates (49–53) yielded a dataset covering the 
essential chemical motifs relevant in drug discovery. A functional 
group analysis revealed that 33 (82.5%) of the 40 most abundant 
functional groups extracted from the 1,174 drug molecules are cov-
ered by the LSF informer library. Further analysis highlighted that 
functional groups that are known to exhibit the desired borylation 
reaction, such as aromatic nitrogens, aromatic alkyl-oxy groups and 
alcohols, are also among the functional groups in the LSF informer 
library that show the highest tolerance for successful reaction out-
comes. On the contrary, certain functional groups such as primary 
amines, carbamates and carbonates, or aromatic functional groups 
with strong electron-withdrawing moieties (for example, nitro-aryls) 
were found to be less tolerated and inhibit desired reaction outcomes 
(Supplementary Section 8.2 for further details on the functional group 
analysis). Since every substrate was screened with every reaction con-
dition, further insights about reaction conditions could be gained 
(Supplementary Tables 4 and 5). Whereas the best-performing ligand 
was 9 (33%), 6–8 (28–30%) showed similar good results, whereas 5 
(22%) and especially 4 (17%) delivered fewer successful reaction out-
comes. Moreover, reaction outcomes were further influenced by sol-
vents. Cyclohexane (10, 50%) outperformed the other three solvents 
2-methyltetrahydrofuran (Me-THF; 11, 43%), cyclopentyl methyl ether 
(CPME; 12, 38%) and acetonitrile (MeCN; 13, 29%).

HTE and GNNs have previously been used for identifying sub-
strates suitable for C–H activation41. This present study extends this 
original approach by (1) using HTE and GNNs for drug molecules, (2) 
introducing a literature search strategy that enables the selection of a 
structurally diverse set of substrates and ideal plate reaction screen-
ing conditions and (3) introducing a flexible geometric deep learning 
approach that considers the influence of steric and electronic effects 
of the substrates and allows the prediction of reaction outcome, yield 
and regioselectivity.

The structural and shape diversity of the compounds used for 
training the regioselectivity prediction model considerably exceeds the 
compound diversity of a recent report on regioselectivity prediction 
for iridium-catalysed borylation reactions47. Compound clustering, 
scaffold and shape analyses of both datasets revealed greater chemical 
diversity of our training data. Furthermore, the neural networks were 
developed with more examples and broader chemical space coverage 
(Supplementary Section 9.1, Supplementary Figs. 14 and 15 and Sup-
plementary Tables 6 and 7). Importantly, the estimated three dimen-
sionality of the data is characteristic of molecules typically observed 
in medicinal chemistry60. These findings positively advocate for using 
these computational models for drug discovery.

In conclusion, the results of this study confirm the practical applica-
bility of the geometric deep learning platform in bioorganic and medici-
nal chemistry and their potential benefit for laboratory automation. 
The approach is routinely and successfully applied to assess binary 
reaction outcome, reaction yield and regioselectivity for borylation 
opportunities in drug discovery projects at F. Hoffmann-La Roche Ltd. 
Additional data points are continuously generated by standardized 
HTE to further enhance the predictive power of the computational 
models presented. For future improvements, (1) additional reaction  
conditions for iridium-catalysed borylation will be explored. This 
extended screening panel could include exchanging the catalyst or 
boron source as well as using a broader variety of ligands and solvents. 
In addition, (2) the LSF informer library can be augmented to include 
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more frequently occurring fragments in drug molecules to expand 
the relevant chemical space and potentially improve the performance 
of the machine learning pipeline. Finally, (3) less frequently employed 
transition-metal-catalysed or even metal-free synthesis methods can be 
investigated to enhance the coverage of the reaction conditions, address-
ing reactions from publications initially excluded from the analysis.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
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Methods
Literature analysis
The systematic analysis of chemical transformations (SACT) of the 
data retrieved from literature consisted of four steps: (1) literature 
search, (2) literature data curation and evaluation, (3) methodology 
extraction and (4) reaction data curation and analysis. All details of 
the literature analysis are provided in Supplementary Section 2. The 
literature analysis identified 38 publications describing relevant 
borylation methods, from which the reaction data were manually 
extracted to obtain a high-quality dataset containing 1,301 chemical 
transformations. Meta-analysis of these data provided a foundation 
for an informed plate design.

LSF informer library
The concept of chemical informer libraries, initially reported by 
Merck48,61, served as the basis for developing the LSF informer library. 
Applying a clustering method based on structural features to a dataset 
containing 1,174 approved small-molecule drugs yielded eight struc-
turally diverse groups of molecules. Details of the applied clustering 
and visualization of the cluster via principal component analysis are 
provided in Supplementary Section 3. Three molecules were selected 
from each cluster based on their distance from the cluster centre, 
price and availability and were subjected to borylation screening. To 
complement the model with fragments relevant to Roche’s chemical 
space, the top 100 most popular ring assemblies found in the Roche 
corporate compound collection were identified. For these ring assem-
blies, substructure searches were performed for the entire database. 
The resulting compounds were retained if (1) the structures had a 
molecular weight below 300 g mol−1 or fewer than 20 non-hydrogen 
atoms, (2) there was at least 1 g of powder stock available and (3) the 
structures were not used in any internal project or subject to legal 
restrictions. Out of this pool of candidates, 12 fragments were manu-
ally selected. Further details on the determination and constitution 
of the LSF informer library are described in Supplementary Section 3.

Screening plate design
Following the SACT approach that delivered a curated high-quality 
literature data set, a meta-analysis was conducted to define a clear 
rationale for determining the conditions for the 24-well borylation 
screening plate used for the LSF informer library. This analysis included 
the temperature (T), time (t), reaction concentration (c) and scale (n), 
selected based on the median values for our screening plate (T = 80 °C, 
t = 16 h, c = 0.2 M, n = 100 mmol). Subsequently, the number of reaction 
components generally used for borylation reactions (catalyst, ligand, 
boron source and solvent) was determined. Owing to the limited space 
on the 24-well plate and the high occurrence of [Ir(COD)(OMe)]2 (2), 2 
was chosen as the catalyst. Analysis of the reagents used in combina-
tion with 2 provided the rationale for choosing B2Pin2 (3) as the boron 
source. This selection made it possible to screen a set of six ligands 
and four solvents. Six rather than four ligands were used because 
the dataset showed a greater variety of ligands than solvents. The 
ligands were assessed based on the chemical diversity of the converted 
starting materials and their commercial availability. Based on these 
results, six ligands from four chemical classes were selected. While the 
meta-analysis revealed that low-boiling solvents are the predominant 
solvents for borylation, their corresponding higher-boiling analogues 
(for example, Me-THF instead of tetrahydrofuran, THF) were selected 
to avoid potential solvent evaporation at 80 °C and reduce the risk of 
cross-contamination. The detailed meta-analysis results leading to the 
final plate design are described in Supplementary Section 4.

HTE borylation screening
Using a 24-well plate design (Fig. 3), all drug molecules from the LSF 
informer library and selected fragments (Supplementary Section 3 and 
Supplementary Figs. 3–5) were screened. The reaction set-up (automated 

solid dosing and solvent addition) and execution (heating and stirring) 
in glass vials on a parallel screening plate were conducted in a glove box 
under a nitrogen atmosphere. Upon completion of the reaction, the 
solvents were removed through evaporation, followed by automated 
resuspension of the residues in MeCN/H2O and dilution to a defined 
concentration for LCMS analysis using a liquid handler. The samples 
were then analysed by LCMS, and the resultant data were subjected to 
an automated reaction data analysis pipeline (Supplementary Figure 6) 
to rapidly determine all components within the mixture. Standardized 
reaction data output (SURF; Supplementary Section 7) allowed direct 
visualization of reaction outcome with the TIBCO Spotfire software as 
well as the direct loading into machine learning models. The general 
screening procedure, including detailed information on the hardware 
and software used, is provided in Supplementary Sections 5 and 6).

Scaled-up reactions
Selected molecules (three drugs, 1, 25 and 29; and four fragments, 37, 
38, 39 and 45) showing substantial conversion to the respective boryla-
tion products were scaled up using the most promising conditions. All 
reactions were conducted under a nitrogen atmosphere in a glove box 
using glass reaction vessels with pressure release caps and standard 
stirring bars. Purification was performed using flash chromatography 
or reversed-phase high-pressure liquid chromatography. In selected 
cases, where separation of the borylated species could not be achieved, 
the boronic ester was transformed into a hydroxyl group. Structural 
elucidation was performed using NMR and HRMS. The full analytical 
results and spectra for all compounds are shown in Supplementary 
Sections 11 and 12.

Deep learning
Graph neural network architecture. The following paragraphs 
describe the neural network architecture of the three introduced GNNs 
(that is, GNN, GTNN and aGNN). GNN and GTNN were trained to learn 
the two reaction properties (that is, binary reaction outcome and 
reaction yield), and aGNN was trained to learn regioselectivity. Details 
about dataset splitting are in Supplementary Section 1.

Molecular graph. For each of the three GNNs (that is, GNN, GTNN 
and aGNN), four different input molecular graph representations were 
investigated, which include steric (3D) and electronic (QM) features in 
different combinations, yielding four different molecular graphs: 2D, 
2DQM, 3D and 3DQM.

E(3)-invariant message passing. The atomic features and option-
ally DFT-level partial charges were embedded and transformed using 
a MLP, resulting in atomic features h0

i . E(3)-invariant message passing 
in a similar fashion as suggested by Satorras et al.62 was applied to l 
layers over all atomic representations h0

i  and their edges. Edges were 
defined by covalent bonds for the 2D graph and all atoms within a radius 
of 4 Å for the 3D graph, respectively. All networks contained three 
message-passing layers. In each message-passing layer, the atomic 
representations were transformed via equation (1)

hl+1
i = ϕ(hl

i, ∑
j∈𝒩𝒩𝒩i)

ψ (hl
i,h

l
j)) , (1)

for 2D graph structures, and equation (2)

hl+1
i = ϕ(hl

i, ∑
j∈𝒩𝒩𝒩i)

ψ (hl
i,h

l
j , ri,j, )) , (2)

for 3D graph structures.
In equations (1) and (2), hl

i is the atomic representation h of the ith 
atom at the lth layer; j ∈ 𝒩𝒩𝒩i) is the set of neighbouring nodes con-
nected via edges; ri,j the interatomic distance features (Methods, “Atom 
featurization” for details); ψ is a MLP transforming node features into 
massage features mij as mij = ψ𝒩hl

i,h
l
j , ri,j) for 3D graphs and mij = ψ𝒩hl

i,h
l
j) 
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for 2D graphs; ∑ denotes the permutation-invariant pooling operator  
(that is, sum) transforming mij into mi as mi = ∑j∈𝒩𝒩𝒩i)mij ; and ϕ is a  
MLP transforming hl

i  and mi into hl+1
i . The atomic features from all  

layers [hl=1
i ,hl=2

i ,hl=3
i ] were concatenated and transformed via a MLP, 

resulting in final atomic features H. H was then transformed differently 
by the three GNNs, using sum pooling (GNN) or multi-head attention- 
based pooling (GTNN) to obtain molecular outputs (that is, reaction 
yield and binary reaction outcome), or no pooling (aGNN) for regio-
selectivity prediction.

GNN. Atom features H were pooled via sum pooling, transformed 
via an additional MLP, concatenated to a learned representation of the 
reaction conditions (Methods, “Condition featurization” for details) 
and transformed to the desired output via a final MLP.

GTNN. A graph multiset transformer49 was incorporated into the 
GTNN architecture for pooling the atomic features into a molecular  
feature. The nodes H were transformed using the Attn function: 
Attn(Q,K,V) = QKTV, where query Q, key K and value V are learned 
features from the node representations H. Q is learned via individual 
embedding vectors per attention head. K and V are learned via indi-
vidual GNNs GNNK and GNNV resulting in the overall graph attention 
head via equation (3):

oi = Attn𝒩HWQ,GNNK
i 𝒩H, ℰ),GNN

V
i 𝒩H, ℰ)) (3)

where oi denotes the weighted pooling vector from one attention head, 
and WQ is a linear layer to learn the query vectors from H. Herein, four 
attention heads are incorporated, yielding the pooling scheme graph 
multi-head attention block GMH: GMH(Q,H,ℰ) = [o1, o2, o3, o4]Wo. This 
learned molecular representation was transformed via an additional 
MLP, concatenated to a learned representation of the reaction condi-
tions (Methods, “Condition featurization” for details) and transformed 
to the desired output via a MLP network.

aGNN. No pooling of atom features was applied, and H was directly 
transformed to the desired atomic output via a final MLP with a sigmoid 
activation function.

Training details. PyTorch Geometric (v.2.0.2)63 and PyTorch 
(v.1.10.1+cu102)64 functionalities were used for neural network training. 
Training was performed on a graphical processing unit, GPU (Nvidia 
GeForce GTX 1080 Ti) for four hours, using a batch size of 16 samples. 
The Adam stochastic gradient descent optimizer was employed65 with 
a learning rate of 10−4, a mean squared error (m.s.e.) loss on the training 
set, a decay factor of 0.5 applied after 100 epochs and an exponential 
smoothing factor of 0.9. Early stopping was applied to the model that 
achieved the lowest validation m.a.e. within 1,000 epochs. All the 
models considered in this study were trained on the Euler computing 
cluster at ETH Zurich, Switzerland.

Atom featurization. Atomic properties were encoded via the follow-
ing atomic one-hot-encoding scheme: twelve atom types (H, C, N, O, F, 
P, S, Cl, Br, I, Si, Se), two ring types (true, false), two aromaticity types 
(true, false) and four hybridization types (sp3, sp2, sp, s). Additionally, for 
molecular graphs that contained electronic features, the atomic partial 
charges were calculated on the fly using DelFTa software66–68, obtaining 
DFT-level (ωB97X-D/def2-SVP (refs. 69,70)) Mulliken partial charges71. For 
molecular graphs that contained 3D information, the interatomic dis-
tances were represented in terms of Fourier features, using a sine-based 
and cosine-based encoding as previously shown in ref. 66.

Condition featurization. Molecular reaction conditions, that is, sol-
vents, ligands, catalysts and reagents, were one-hot encoded. Whereas, 
the experimental dataset covered six ligands and four solvent types 
(that is, 24 possible conditions per substrate), the literature dataset 
covered twelve ligands, nine solvents, two reagents and four catalyst 
types (that is, 864 possible conditions per substrate). Supplementary 

Section 4 gives a detailed description of the structures covered by 
these one-hot-encodings.

Conformer generation. The 3D conformers were calculated using 
RDKit (AllChem.EmbedMolecule (ref. 72)) followed by energy minimi-
zation via the universal force field (UFF) method73. For each molecule, 
ten different conformers were calculated for training and testing. A 
conformer was randomly selected at each training step. For testing, the 
final predictions were obtained by averaging the individual predictions 
calculated for each of the ten conformers.

Baseline model. The ECFP4NN baseline model combined three 
MLPs for input transformation, namely the ECFP4 fingerprint and 
two embedded reaction conditions (that is, solvent and ligand). The 
ECFP4 feature dimension was set to 256 after screening the feature 
dimensions in the range of 27−210. Additional baseline experiments 
using binary reaction fingerprints with two popular decision tree algo-
rithms, gradient boosting and extreme gradient boosting (XGBoost), 
can be found in Supplementary Section 10.

Number of hyperparameters. The feature dimension of the GNN 
internal representation was set to 128, except for (1) the embedding 
dimension of the reaction and atomic properties,tr which was set to 64, 
and (2) the first MLP layer after the graph multiset transformer-based 
pooling, which was set to 256. This setting resulted in neural network  
sizes of ~2.0 million trainable parameters for the GNN and aGNN  
models and ~3.0 million trainable parameters for GTNN. The dimen-
sions within ECFP4NN were maintained at 128 yielding a neural network 
size of ~2.0 million trainable parameters.

Dataset filtering and reaction yield. From the total number of 1,301 reac-
tions in the literature dataset, 492 reactions were used for yield prediction. 
Two filtering criteria were applied to obtain these training data: (1) dupli-
cate reactions were removed, that is, reactions with identical annotations 
for starting material, catalyst, solvent, reagent, and product, and (2) only 
those reactions were included that included catalysts, solvents, reagents, 
and that occurred at least four times in the whole dataset (in line with the 
one-hot encoding described in Methods, “Condition featurization”).

Dataset filtering and regioselectivity. From the total number of 1,301 
reactions in the literature dataset, 656 reactions were used for regiose-
lectivity prediction. Three filtering criteria were applied to obtain these 
training data: (1) duplicate products (reactions with identical products) 
were removed, (2) only reactions using B2Pin2 (that is, bis(pinacolato)
diboron) as the borylation product were kept and (3) an annotated 
yield of ≥30% was required.

Data availability
The SURF-formatted literature and experimental datasets containing 
1,301 and 956 reactions, respectively, as well as a SURF template are 
available at https://github.com/ETHmodlab/lsfml (https://zenodo.
org/record/8118845).

Code availability
A reference implementation of the geometric deep learning platform 
based on PyTorch64 and PyTorch Geometric63 is available at https://
github.com/ETHmodlab/lsfml (https://zenodo.org/record/8118845).
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