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Regioselective, catalytic 1,1-difluorination  
of enynes
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Fluorinated small molecules are prevalent across the functional 
small-molecule spectrum, but the scarcity of naturally occurring sources 
creates an opportunity for creative endeavour in developing routes to 
access these important materials. Iodine(I)/iodine(III) catalysis has proven 
to be particularly well-suited to this task, enabling abundant alkene 
substrates to be readily intercepted by in situ-generated λ3-iodanes and 
processed to high-value (di)fluorinated products. These organocatalysis 
paradigms often emulate metal-based processes by engaging the π bond 
and, in the case of styrenes, facilitating fluorinative phenonium-ion 
rearrangements to generate difluoromethylene units. Here we demonstrate 
that enynes are competent proxies for styrenes, thereby mitigating 
the recurrent need for aryl substituents, and enabling highly versatile 
homopropargylic difluorides to be generated in an operationally simple 
manner. The scope of the method is disclosed, together with application in 
target synthesis (>30 examples, up to >90% yield).

The synergistic interplay of precision synthesis1,2 and functional small-
molecule design3 continues to be a major driver of innovation in both 
disciplines. In the vanguard of enabling technologies, fluorination has 
a venerable history in tailoring the physiochemical traits of promising 
active pharmaceutical ingredients (APIs), and the societal impact of 
Fried’s seminal work on fluorinated steroids is a compelling exemplar4. 
Function-driven synthesis thus continues to provide a powerful incen-
tive to expand the current methodological arsenal under the auspices 
of atom and step efficiency5. In particular, the success of the geminal-
difluoromethylene group in leading pharmaceuticals has stimulated 
much interest in the development of main group catalysis-based strate-
gies to facilitate installation from readily available precursors6–8.

The prominence of fluorination patterns in contemporary drug 
discovery9–14 disguises the comparative scarcity of naturally occurring 
organofluorines in marine and terrestrial environments15,16. Although 
more than 5,000 halogen-containing natural products have been 
described so far17,18, and fluorine sources are accessible, it is manifest 
that nature has not been compelled to evolved fluorine biochemistry 
to any substantial degree19,20. This fluorous juxtaposition between 
natural and synthetic functional small molecules continues to provide 

opportunities for the conception and development of new molecular 
entities with geometries and physiochemistries that are not encoun-
tered in biology21–23, and it logically follows that this continues to 
expand the chemical space available for function-driven synthesis. 
A compelling exemplar is the bond-angle distortion that results from 
CH2 to CF2 replacement24, which renders the difluoromethylene group 
a validated bioisostere of oxygen in phosphate mimics25,26. This motif is 
finding increasing application in the small-molecule drug repertoire, 
with prominent examples including lubiprostone (Amitiza), tafluprost 
(Taflotan) and various 5-HT1D agonists (Fig. 1a)27. Motivated by the 
demand for new fluorinated modules for medicinal chemistry12,14, 
and cognizant of the emergent importance of alkyne-containing APIs 
such as efavirenz (Estiva) and levonorgestrel (PlanB One-Step), it was 
envisaged that a route to homopropargylic difluorides would address a 
gap in the discovery portfolio: this would provide isosteric surrogates 
of propargylic ethers and alcohols in which the electronegativity of 
the fluorine atoms would emulate the non-bonding electron pairs28.

Of the many enabling innovations that enable direct, geminal 
difluoromethylenation of alkenes, hypervalent iodine (I/III) catalysis 
has proven particularly powerful29–39. However, a precondition of this 
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this, it was envisaged that enynes would be attractive substrates 
in which the electron-rich alkyne would serve as a phenyl proxy. 
This would enable the regiochemical paradigm predicated on the 
phenonium-ion rearrangement to be replaced by a formal 1,2-alkynyl 
shift via a stabilized vinyl cation (Fig. 1c). Homopropargylic fluorides 
would also enable direct access to homoallylic and alkyl difluorides, 
thereby expanding the impact of catalytic difluorinations enabled by 
I(I)/I(III) catalysis.

strategy is the requirement for substrates that undergo skeletal rear-
rangement to ensure that the desired 1,1-regioselectivity of the fluori-
nation is reached (Fig. 1b)40. This restraint continues to limit the scope 
of the transformation to styrene derivatives in which a phenonium-ion 
rearrangement occurs41–45. Although the introduction of heteroatom 
substituents partially circumvents this limitation35,36,46–48, geminal 
difluorination in the presence of carbon-based groups, in the absence  
of aryl substituents43, remain conspicuously challenging. To address 
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Fig. 1 | Development of a catalytic gem-difluorination of enynes.  a, Bioisostere 
design and examples of bioactive molecules containing a CF2 or alkyne moiety.  
b, Hypervalent iodine-catalysed gem-difluorination of alkenes and the 
phenonium-ion rearrangement. c, Reaction blueprint to enable catalysis-based 

fluorinative alkyne-migration. The electron-rich alkyne is envisaged to be a 
competent proxy for phenyl, enabling the phenonium-ion rearrangement to be 
replaced by a formal 1,2-alkynyl shift via a stabilized vinyl cation.
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A catalytic cycle was conceived based on the in situ generation of 
an ArIF2 species, via a process of ligand exchange, that would promote  
an alkene-activation and fluorination sequence. Should the key  
rearrangement be successful, then the product cation would benefit 
from fluorine as a stabilizing auxiliary49. This would provide a facile 
route to homopropargylic difluorides, in which the alkyne handle 
would facilitate downstream functionalization.

Results and discussion
To validate the working hypothesis delineated in Fig. 1c, enyne S1  
was prepared and exposed to catalysis conditions using various  
inexpensive aryl iodides, oxidants and HF sources (Table 1). Initially, 
p-TolI was combined with Selectfluor and amine•HF (1:7 ratio) in  
chloroform at ambient temperature. This enabled the desired homo-
propargylic fluoride 1 to be generated in 88% yield. Importantly, the 
vicinal regioisomer was not formed under these conditions, as deter-
mined by 19F NMR (<5%). However, in the absence of the catalyst, the 
vicinal difluoride was formed in 13% yield. A screen of electronically 
modulated catalysts confirmed the superiority of p-TolI, and revealed 
the following trend: p-Me > p-H > p-CO2Me > p-OMe. Modifying  
the amine:HF ratio or the oxidant were found to have a detrimental 
effect on the reaction outcome (Table 1).

Having identified optimized conditions for the title reaction, 
the scope and limitations of the transformation were investigated. 
In the course of this process, reactivity differences were noted in 
response to subtle changes in the amine:HF ratio. This is in line with 
early observations related to the impact of trifluoroacetic acid on the 
reactivity of iodobenzene dichloride50. For that purpose, a gradient 
of amine:HF ratios was considered starting from 1:4.5 and increas-
ing to 1:7.0 (denoted A–F). For simplicity, only the most effective 
conditions are indicated in Table 2. Initially, the impact of modifying  
the capping aryl group was investigated while keeping the alkene  
substituent constant (R = Me). This enabled a series of gem-difluorides 
to be generated, and demonstrated functional-group compatibility 
with electron-withdrawing groups, halogens and small alkyl fragments 
(1–10, up to 83%). In the case of product 2, it was possible to rigorously 

establish the molecular connectivity by single-crystal X-ray diffraction 
(Table 2; CCDC 2256836). Gratifyingly, the method also proved to 
be compatible with medicinally relevant heterocycles such as pyri-
dines, quinolines and morpholines (11–13, up to 56%). Furthermore, it  
was possible to replace R = Me with R = CH2X (X = Br and Cl) to cre-
ate linchpins that could be functionalized at the proximal C(sp3)  
position (15 and 16, up to 91%). Finally, the compatibility of the  
method with more complex natural-product-derived scaffolds was 
validated (17–19).

To advance the scope of the transformation beyond 
aryl-substituted enynes, aliphatic derivatives were then explored 
with a view to applying the method to target synthesis (Table 3). Sim-
ple alkyl and cycloalkyl derivatives were tolerated (20 and 21, up to  
63%) and it was possible to introduce functionality in the form of  
phthalimides (22, 50%) and ethers (23, 71%). Substrates with potentially 
challenging benzylic/propargylic positions such as 24 were smoothly 
converted to the desired product. The transformation was found to be 
chemoselective for the enyne versus cinnamoyl motifs (25, 64%), and 
alkynoic esters (26, 63%), tosylates (27, 56%) and alcohols (28, 41%) 
were compatible. Modifying the alkyl substituent was possible (29, 
30) and enabled the 1,2,2-trifluoro motif to be generated in a facile 
manner. The introduction of more complex heterocycles, such as in 
febuxostat (Adenuric) derivative 32, is an encouraging validation of the 
method in a drug-discovery setting. With a view to accessing the par-
ent motif derived from the unsubstituted enyne, the triisopropylsilyl 
(TIPS)-acetylene 33 was prepared in 67% yield.

To demonstrate the synthetic utility of this geminal difluori-
nation of enynes, two representative experiments were validated 
on a 4.0 mmol scale (Fig. 2a), and a series of product derivatiza-
tion reactions were conducted (Fig. 2b). Initially, alkyne 20 was 
fully and partially reduced51 to the alkane and alkene products 
34 and 35, respectively. To demonstrate the value of the homo-
propargylic fluorides in hetero cycle formation, compound 
4 was converted to the quinoxaline 36 through Ru-catalysed 
oxidation of the alkyne and concomitant condensation with 
1,2-phenylendiamine52,53. Desilylation of compound 33 with tetrabu-
tylammonium fluoride (TBAF) furnished the terminal alkyne 37 in 
85% yield: this could then be processed further to triazole 38 via 
a copper-catalysed click reaction54. In situ deprotection of 33 and 
subsequent Sonogashira cross-coupling proved facile, enabling the 
electron-rich aryl alkyne 39 to be generated in 64% yield. Because 
electron-rich enynes undergo uncatalysed side reactions with  
the Selectfluor55, this approach enables the geminal difluorina-
tion products to be generated by an alternative route. Finally, 
the compatibility of the motif under Suzuki–Miyaura condi-
tions was demonstrated through the generation of compound  
40 (93% yield)56.

A concise route to the CF2-modified palmitic acid 44 was 
conceived to validate the method in target synthesis (Fig. 2c). 
Initially reported by O’Hagan and co-workers in the context of a 
wider study of the conformational preferences of palmitic acids 
and nonadecane containing CF2 groups57, this molecule remains a 
benchmark in difluorination method development58. With the aim 
of complementing the existing reagent-based approaches, enyne 
41 was exposed to the catalytic geminal-difluorination conditions: 
this furnished the key intermediate 42 in 51% yield. Chemoselec-
tive reduction of the alkyne and saponification of the methyl ester 
enabled the desired compound 44 to be generated in 98% yield 
over two steps.

Finally, control reactions were performed to establish that dele-
tion of the alkyl substituent was tolerated (Fig. 3). Interest in the 
difluoromethyl group as a surrogate of primary alcohols28 renders 
such products appealing in the wider context of molecular design 
on account of their hydrogen-donor character59. Pleasingly, both the 
aryl- and alkyl-substituted enynes 45 and 47 could be processed to their 

Table 1 | Reaction optimization

O2N
O2N

ArI catalyst (20 mol%)
Selectfluor (1.5 equiv.)

Amine•HF (1:7.0),
CHCl3, r.t., 24 h

Me

88% 70% %53%03

Me

F F

I

MeO

I
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I

H

I

MeO2C

11S

Entry Modified conditions Yield (%)

1 Amine•HF 1:4.5 55

2 Amine•HF 1:9.2 41

3 Oxone as oxidant 51

4 m-CPBA as oxidanta 74

5 10 mol% p-TolI 78

6 Reaction at 0 °C 24

7b No catalyst <5

8 No oxidant <5

Standard reaction conditions: enyne S1 (0.1 mmol), catalyst (20 mol%), amine•HF 1:7.0 
(0.25 ml), CHCl3 (0.25 ml) and Selectfluor (0.15 mmol). Yields were determined by 19F NMR 
using ethyl fluoroacetate as an internal standard. ameta-Chloroperoxybenzoic. bAmine•HF 
ratio changed to 1:7.5.
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respective homopropargyl difluoride products 46 and 48, respectively. 
Replacing the substituent with an aryl group (49 Ar = p-CF3) was then 
explored to identify which regioisomer was predominantly formed. 
The isolation of compound 50 as the sole product of the reaction (40% 
yield) is consistent with the 1,2-shift out-competing phenonium-ion 
rearrangement. The skeletal rearrangement that is central to the  
working hypothesis was supported by deuterium labelling to  
generate 29-d (56%, 76% D incorporation; Fig. 3c).

Conclusions
The direct, geminal difluorination of alkenes under the auspices 
of hypervalent iodine catalysis remains a powerful paradigm to  
expand organofluorine chemical space for contemporary drug  
discovery. In situ-generated λ3-iodanes regulate regiocontrol by  
inducing C(sp3)–F bond-forming/rearrangement sequences with  
exquisite efficiency: the latter step is conditional on substrates that are 
predisposed to undergo a phenonium-ion rearrangement. To circumvent 
this limitation, enynes have been validated as competent substrates that  

deliver the desired 1,1-selectivity, where the phenonium-ion rear-
rangement can be replaced by a formal 1,2-shift of the alkyne. Com-
putational support for the tentative mechanism outlined in Fig. 1  
is available in Supplementary section 1.7. Utilizing the alkyne as a  
phenyl proxy, it has been possible to achieve the title reaction and 
deliver homopropargylic difluorides that are highly amenable to down-
stream functionalization. A broad substrate scope is demonstrated 
(>30 examples) together with selected derivatization protocols, as 
well as a short, catalysis-based synthesis of CF2-modified palmitic acid. 
It is envisaged that this enabling method will find application in the 
conception of new drug-discovery modules.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
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Table 2 | Establishing the scope of aryl alkynes
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cAmine:HF = 1:5.0. dAmine:HF = 1:4.5. e19F NMR yield using ethyl fluoroacetate as an internal standard. 23% of the vicinal difluorination product was formed due to an uncatalysed background 
reaction (details are provided in Supplementary section 1.3). fReaction performed on a 0.10 mmol scale. gThermal ellipsoids are shown at 50% probability. Care should be exercised during 
isolation due to the volatility of many of the products.
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Methods
General procedure for 1,1-difluorination of enynes
Unless otherwise stated, a Teflon vial was equipped with a 1-cm  
stirring bar followed by the addition of enyne (0.2 mmol, 1.0 equiv.), 
p-iodotoluene (9 mg, 0.04 mmol, 20 mol%) and CHCl3 (0.5 ml). The 
stated amine:HF mixture was added (0.5 ml) via syringe. After stirring  
for 1 min, Selectfluor (106 mg, 0.3 mmol, 1.5 equiv.) was added in 
one portion. The reaction vessel was then sealed with a Teflon screw 
cap. After stirring (350 r.p.m.) at ambient temperature for 24 h, the 
reaction mixture was poured into 100 ml of a saturated solution of  
NaHCO3 (caution! generation of CO2!). The Teflon vial was rinsed with 
dichloromethane (DCM) and dropped into another flask of saturated 
aqueous solution of NaHCO3 to guarantee the removal of excess HF. 
The organics were extracted with DCM (3 × 30 ml), the combined 
organic layers were dried over Na2SO4, filtered, and the solvent was 
carefully removed under reduced pressure. An internal standard (ethyl 
fluoroacetate) was added to the crude residue and the NMR yield  
was analysed by 19F NMR spectroscopy against the internal standard. 
The NMR sample was recombined with the crude residue and purifica-
tion by column chromatography or preparative thin-layer chromato-
graphy yielded the desired product.
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