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T et ra fl uo re no fu lvalene as a sterically 
frustrated open-shell alkene

Bibek Prajapati1,4, Madan D. Ambhore1,4, Duy-Khoi Dang    2, 
Piotr J. Chmielewski1, Tadeusz Lis1, Carlos J. Gómez-García3, 
Paul M. Zimmerman    2  & Marcin Stępień    1 

Electronic and steric effects are known to greatly influence the structure, 
characteristics and reactivity of organic compounds. A typical π bond 
is weakened by oxidation (corresponding to the removal of electrons 
from bonding orbitals), by reduction (through addition of electrons to 
antibonding orbitals) and by unpairing of the bonding electrons, such as in 
the triplet state. Here we describe tetrafluorenofulvalene (TFF), a twisted, 
open-shell alkene for which these general rules do not hold. Through the 
synthesis, experimental characterization and computational analysis of 
its c  h a  rg  ed s pe ci es spanning seven redox states, the central alkene bond 
in TFF is shown to become substantially stronger in the tri- and tetraanion, 
generated by chemical reduction. Furthermore, although its triplet state 
contains a weaker alkene bond than the singlet, in the quintet state its bond 
order increases substantially, yielding a flatter structure. This behaviour 
originates from the doubly bifurcated topology of the underlying spin 
system and can be rationalized by the balancing effects of benzenoid 
aromaticity and spin p ai ri ng.

The interplay between electronic conjugation and the geometrical dis-
tortion of π bonds is of fundamental importance in organic chemistry 
because of its role in defining the properties of chromophores1, organic 
semiconductors2,3, chemical reagents4 and molecular machinery5. In 
nature, double-bond isomerization forms the functional basis of the 
retinoid cycle responsible for human vision6, with fine-tuning provided 
by molecular distortions of the chromophore7. In the laboratory, twist-
able double bonds have been incorporated into molecular switches and 
motors5, switchable chromophores2,8–10 and organic magnetic materi-
als11–17. The performance of such molecular devices critically depends 
on the electronic and steric features of the π system containing the 
switchable bond. All of these applications have created considerable 
interest in the properties of distorted π systems, ranging from simple 
alkenes18,19 to complex polycyclic aromatics20–23.

The equilibrium twist angle θeq and the isomerization barrier of an 
alkene are interrelated and can be controlled by changes of the bond 
order and by steric effects. The double bond can be weakened by both 

oxidation24,25 and reduction2,26–28, as well as by introducing permanent 
twist to its ground-state structure29,30. Highly distorted alkenes have 
been developed from 9,9′-bifluorenylidene (1a; Fig. 1a) as well as some 
closely related fused frameworks31–34. The twist of 1a35 is increased by 
bulky substitution8,36,37 or ring fusion38–41, as illustrated by 1b36 and 
238–40, respectively. The large twist in 1b and 2 results in elongation of 
the respective double bonds, reduction of electronic energy gaps, and 
decreased isomerization barriers.

Simple alkenes become non-planar in the triplet state42,43, and 
some of the intrinsically twisted systems have thermally accessible 
triplets (for example, 32). These observations suggest a possible strat-
egy for controlling the alkene twist by increasing open-shell contribu-
tions to the ground state. We reasoned that such an influence can be 
studied by hybridizing a twisted alkene system with appropriately 
chosen stable oligoradicaloid motifs, such as those obtainable by 
indene fusion44–46. This approach leads to proaromatic systems such 
as 3 (Fig. 1b)47, which derive their stability in the singlet and triplet 
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bond length pattern suggests considerable open-shell contributions 
to the electronic structure of TFF.

Compound 4a, which is NMR-silent in solution, revealed a per-
sistent electron spin resonance (ESR) signal in solid samples of 4a, 
the intensity of which decreased with decreasing temperature. The 
temperature dependence of the ESR signal was modelled using the 
Bleaney–Bowers equation, yielding an estimate of the singlet–triplet 
gap ΔES–T of −1.5(1) kcal mol−1. Superconducting quantum interfer-
ence device analysis confirmed that 4a is a ground-state singlet, with 
ΔES–T = −3.1(1) kcal mol−1 calculated using the Bleaney–Bowers model. 
Absorption spectra of the deep-blue 4a contained several strong 
maxima in the range of 400–800 nm and a weak band tailing beyond 
1,000 nm, corresponding to a relatively small energy gap of ~1.2 eV. 
In line with the latter observation, 4a displayed pronounced redox 
amphoterism in electrochemical experiments (Supplementary Fig. 1). 
In differential pulse voltammetry, three oxidation events were found 
at 0.01, 0.16 and 1.03 V (versus Fc+/Fc in dichloromethane). Reduction 
of 4a occurred at −1.07 (2e), −1.90 (1e) and −2.01 V (1e), respectively.

Titration of 4a with a one-electron oxidant, tris(4-bromophenyl)
ammoniumyl hexachloroantimonate (BAHA, Eox = 0.7 V in dichlo-
romethane (DCM)) revealed consecutive formation of two 
NIR-absorbing species, with each step yielding near-perfect isosbestic 
points (Fig. 3a). The neutral 4a could be quantitatively recovered by 
reduction with KO2. The two oxidation products were also generated 
electrochemically (Supplementary Figs. 15 and 16), and identified, 
respectively, as the radical cation [4a]•+ (λmax = 860 nm) and dication 
[4a]2+ (λmax = 985 nm). The absorption of the radical cation features a 
shoulder at ~1,200 nm, implying a smaller energy gap in [4a]•+ than in 
[4a]2+. In contrast to the neutral 4a, the dication [4a]2+ is diamagnetic. 
In its 13C NMR spectrum, the C11 resonance was identified at a highly 
downfield position of 184 ppm, indicating partial localization of the 
positive charge at this site. The structure of the dication was further 
elucidated in an X-ray diffraction analysis of a single crystal of the [4a]
[SbCl6]2 salt (Fig. 2b). In comparison with the neutral 4a, the i bond is 
somewhat lengthened (to 1.462(6) Å), and the θeq torsion increases to 
54.5–55.8°. These changes suggest that the two-electron oxidation 
results in a moderate decrease of the i bond order.

states from open-shell contributions containing an increased number 
of Clar sextets.

By applying quadruple indene fusion to 9,9′-bifluorenylidene, we 
have now obtained the twisted hydrocarbon tetrafluorenofulvalene 
(TFF, 4), in which the properties of the centre alkene bond show a 
uniquely complex dependence on the electronic state of the π system. 
A fully closed-shell (Kekulé-like) valence structure can be drawn for 4 
(Fig. 1c); however, this is devoid of any Clar sextets. In fact, only one 
double-bond localization pattern exists for 4, implying a purely olefinic 
(non-aromatic) character of the closed-shell contribution. Given the 
presence of six five-membered rings in 4, it is possible to draw a range 
of open-shell configurations, containing up to six radical centres and 
up to eight Clar sextets (4′; Fig. 1c). Their relative contributions define 
the degree of spin pairing in the system, which in turn affects the central 
alkene bond. The twist of the alkene is further modified by changes 
of the oxidation level, which span a range of seven redox states. We 
show that the behaviour of the system can be rationalized by analys-
ing changes in its aromaticity and electron pairing using a simple, yet 
general, valence bond model.

Results and discussion
Synthesis and properties
The mesityl-substituted TFF derivative 4a was obtained in a four-step 
procedure (described in the Supplementary Information) and com-
pletely characterized. In the solid state (Fig. 2a), the two diindenoflu-
orenylidene (DIF) subunits of 4a form a twist angle θeq of 50.5°, which 
is larger than the corresponding torsion in 1a (33°), and comparable to 
that in the sterically congested 2. However, with a length of 1.431(7) Å, 
the central alkene bond i is appreciably elongated in comparison with 
unhindered 9,9′-bifluorenylidene (BF) derivatives (1.36–1.38 Å)35,37,48, 
and is even longer than the corresponding bond in 2 (1.40–1.41 Å)40. 
Because the ii bonds in 4a (1.422(3) Å) are also shorter than those in 
the reported unhindered BF systems (1.46–1.48 Å), the central dou-
ble bond in 4a is weakened by conjugation within the DIF subunits. 
Furthermore, distance iii, which corresponds to a formal single bond 
in the closed-shell configuration of 4a, is shorter than the formally 
double bond iv (1.398(4) Å versus 1.456(4) Å). Thus, the solid-state 
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Fig. 1 | The design of tetrafluorenofulvalene. a–c, Combining the π-extended 
twisted alkenes motif found in bifluorenylidene and its derivatives (a) with  
the concept of indene fusion (b) produces tetrafluorenofulvalene (TFF) (c),  
a sterically frustrated alkene with an increased multiconfigurational character. 
Clar sextets and unpaired electrons are denoted respectively by red bonds and 

red dots, and the relative orientations of spins are indicated with black arrows. 
Key structural parameters, torsions (θeq) and bonds (i–iv) are labelled in blue. For 
all systems discussed in the paper, the torsion (twist) angle θ was calculated as the 
mean of the two torsions defined by atoms 8a–9–9'–8'a and 9a–9–9'–9'a of the  
BF substructure.
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Even though a two-electron reduction event had been revealed 
in electrochemical measurements, titration of 4a with cobaltocene 
(CoCp2, Ered = −1.3 V) provided evidence for stepwise electron transfer 
(Fig. 3b, inset). Specifically, upon addition of up to 4 equiv. of CoCp2, 
we observed initial formation of the radical anion [4a]•− (λmax = 685, 
920, 1,155 and ~1,355 nm). Further addition produced the dianion 
[4a]2− (λmax = 760 and 1,120 nm), which could be oxidized back to 4a 

using diiodine. A broader range of anionic states of 4a was achiev-
able by reduction with sodium naphthalenide (NaN) in the presence 
of 15-crown-5 (Fig. 3b,c). Initial spectra, observed in the range of 0–9 
formal equivalents of added NaN, corresponded to the sequential 
formation of [4a]•− and [4a]2−. On further addition of NaN (~17 equiv.), 
we observed the formation of a new species, with near-infrared (NIR) 
absorptions extending beyond 2,000 nm, which was presumed to 
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Fig. 2 | Structures of TFF at different oxidation levels, determined in X-ray 
diffraction analyses. a, Structure of 4a. b, Structure of [4a]2+ (one of two non-
equivalent dications, shown with two proximal [SbCl6]− anions). c, Structure of 
[4a]2−/[4a]•− (shown with two distinct [Na(THF)n]+ countercations; for details, 
see main text). d, Structure of [4a]4− (shown with the coordinated [Na(THF)3]+ 

subunits). Hydrogen atoms, minor disordered positions and solvent molecules 
have been omitted for clarity. The effect of the oxidation state of TFF on the 
strength of the double bond is illustrated by changes of alkene bond length and 
θeq torsions (grey labels, averaged values are given for θeq).
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Fig. 3 | Absorption spectra of 4a and its oxidized and reduced forms. These 
experiments reveal the redox amphoterism of TFF and the strong near-infrared 
absorption of its multiple oxidation levels. a, Oxidation of 4a to [4a]•+ and [4a]2+ 
(0–2 equiv. BAHA, DCM). b, Reduction of 4a to [4a]•− and [4a]2− (0–4 equiv. NaN, 
50 equiv. 15-crown-5, THF). Inset: reduction of 4a to [4a]•− and [4a]2− (0–4 equiv. 
CoCp2, THF). c, Reduction of [4a]2− to [4a]•3− and [4a]4− (4–24 equiv. NaN, 
50 equiv. 15-crown-5, THF). Inset: colour changes observed during reduction 

with sodium naphthalenide (values correspond to the charge of the major TFF 
form present in solution). In all panels, the spectrum of 4a is shown as a filled blue 
contour. Spectra corresponding to maximum concentrations of specific charged 
states are indicated with bold curves. Coloured arrows indicate the direction 
of change caused by addition of the titrant. For theoretical simulations of these 
spectra, see Supplementary Figs. 24–30.

http://www.nature.com/naturechemistry


Nature Chemistry | Volume 15 | November 2023 | 1541–1548 1544

Article https://doi.org/10.1038/s41557-023-01341-8

be the radical trianion [4a]•3−. When an even larger excess of NaN was 
added (up to 33 equiv.), these characteristic bands disappeared, and 
the final spectrum had an absorption onset at ~1,200 nm. Thus, the 
ultimate reduced product had a larger energy gap than all the preced-
ing forms and was tentatively assumed to be the tetraanion [4a]4−. Both 
[4a]4− and the dianion [4a]2− could be selectively generated on a larger 
scale and characterized using 1H NMR (Supplementary Figs. 2 and 7–11).

Single crystals containing [4a]2− and [4a]4− anions were grown 
from tetrahydrofuran (THF) solutions of 4a reduced with sodium 
metal in the absence of the crown ether additive. The tetraanion struc-
ture [Na(THF)3]4[4a] revealed a highly regular pattern of Na cations 
coordinated directly to the π system (Fig. 2d). The cations are bound 
near the fused edges of the BF core, with the shortest Na···C distances 
of 2.636(6) Å. Apparently, binding to the five-membered rings, which 
are presumed to carry a substantial portion of the negative charge, is 
not feasible because of steric protection by the Mes substituents. The 
i bond in the tetraanion is stronger than in other oxidation levels of 4a, 
as evidenced by its short length of 1.35(1) Å and the smaller θeq torsion 
of 40.9°. Partial reduction of 4a yielded crystals with a stoichiometry 
of [Na(THF)6][Na(THF)5]0.74[4a]·8.3THF, indicating a mixed-valence 
character of 4a. Sodium occupancies indicate that the crystal con-
tains mostly the dianion [4a]2− with an ~26% admixture of the radical 
anion [4a]•−. The structure is notable for the lack of Na···π coordina-
tion, reflecting the smaller negative charge residing in the π system. 
Specifically, two non-equivalent sodium sites were found: octahedral 
[Na(THF)6]+ and disordered square-pyramidal [Na(THF)5]+. The appar-
ent geometry of 4a is averaged over the two contributing redox states 
(−1 and −2) and features a relatively long bond i (1.436(6) Å) and a large 
θeq torsion (58.1°). These parameters may indicate weaker conjugation 
between the DIF subunits in [4a]2− and [4a]•− than in [4a]4−.

Computational analysis
Density functional theory (DFT) calculations performed for the 
substituent-free TFF molecule 4b (R = H; Fig. 1c) revealed substantial 

variations of the key geometrical parameters as a function of the 
charge and multiplicity of the system (Supplementary Table 1). At the 
UCAM-B3LYP/6-31G(d,p) level of theory (hereafter denoted CAM), 
the equilibrium torsion θeq and central bond distance i ranged from 
33.7° and 1.372 Å in 5[4b] to 90.0° 1.477 Å in 3[4b]4−, respectively. The i 
distance shows good correlation with θeq, indicating that both param-
eters can be used to quantify the strength of the inter-subunit interac-
tion in TFF. Relaxed potential energy surface (PES) scans along the θ 
coordinate revealed a complex dependence of the energy profile on 
the charge and multiplicity of 4b (Fig. 4 and Supplementary Table 1).  
Specifically, all singlets and doublets have a twisted equilibrium 
geometry, characterized by θeq < 60° and a transition state at θ = 90°.  
The singlet dication 1[4b]2+ features the lowest twist barrier  
(ΔEtwist = ΔErel(90°) − ΔErel(θeq) = 0.8 kcal mol−1) and the least-acute θeq 
angle (59.2°). The ΔEtwist barriers increase in the order 1[4b]2+ < 1[4b]2−  
< 2[4b]+ < 1[4b] < 2[4b]− < 2[4b]3− < 1[4b]4− and correlate with a decrease 
of the respective θeq angles. The above sequence can thus be assumed  
to reflect an increase of the bond order i. PES scans of the triplets 
lie above the corresponding singlet scans at all θ angles: a single- 
well potential with θeq = 90° is predicted for 3[4b]4−, while double-well 
potentials are found for 3[4b]2+ and 3[4b]2−. The latter two species 
are destabilized relative to the respective singlets, but their twist 
barriers ΔEtwist are actually higher, implying that the i bond becomes 
stronger in these two triplet states. Conversely, the neutral triplet, 
3[4b], has a shallow minimum at θeq = 58.2° with a low ΔEtwist barrier 
of 1.1 kcal mol−1, implying a particularly weak i bond. This behaviour 
could be considered typical of an alkene; however, in quintet state 
5[4b], the bond is predicted to be very strong, with a much higher twist 
barrier of 15.7 kcal mol−1. This unusual response of the inner alkene in 
the neutral 4b to changes of spin multiplicity is further confirmed by 
the torsional dependence of the i and ii bond lengths (Supplementary 
Fig. 16). The triplet 3[4b] and quintet 5[4b] approach the limits of a 
pure single and double i bond, respectively, whereas the singlet 1[4b] 
contains a strongly conjugated alkene with an intermediate bond order.
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Adiabatic singlet–triplet gaps predicted for even-electron 
ions of 4b at the CAM level are relatively large (approximately −9 
to −15 kcal mol−1; Fig. 4 and Supplementary Table 1), in line with the 
observed diamagnetism of [4a]2+, [4a]2− and [4a]4−. For the neutral 
4b, a markedly smaller gap was obtained (ΔEST = −3.91 kcal mol−1), 
relatively close to the experimental superconducting quantum inter-
ference device value, whereas the quintet state 5[4b] was predicted 
to have a much higher energy (ΔESQ = −14 kcal mol−1). Because CAM, 
as a single-reference method, is not fully suitable for quantitative 
assessment of spin-state energetics, we evaluated energies of the 
neutral m[4b] (m = 1, 3, 5) using two active-space methods, that is, 
CAS-SCF(6,6)/6-31G(d,p) (denoted CAS), and the spin-flip approach49,50 
at the RAS(4,4)-SF-srB3LYP/cc-pVDZ level of theory (denoted RAS). 
RAS calculations, performed for the CAM-optimized minima and PES 
scans, indicate that the ST and SQ gaps may be smaller than predicted 
by the CAM level (approximately −3 and −7 kcal mol−1, respectively; 
Supplementary Fig. 18).

An analysis of natural orbital occupation numbers (NOONs) 
showed that the neutral singlet 1[4b] had a pronounced tetraradicaloid 
character, as revealed by the values of di- and tetraradicaloid indexes, 
y0 ≥ 0.98 and y1 ≥ 0.29, respectively, with a possible smaller hexaradi-
caloid contribution (y2

CAM = 0.12). The number of unpaired electrons 
obtained from the CAM-derived NOONs (nU

CAM; Supplementary Table 1)  
is non-zero for all states except for 1[4b]4−, which is the only one with 
a purely closed-shell configuration. The nU

CAM value of 3.15 obtained 
for the neutral singlet 1[4b] is in fact higher than in the corresponding 
triplet state. Extensive mixing of open-shell configurations is indicated 
by the high values of nU

CAM (that is, exceeding m − 1) obtained for 2[4b]+ 
and 2[4b]−. Because twisting of an alkene normally leads to π-bond 
breaking, one could intuitively expect the nU values to increase with 
increasing θ. However, no such general relationship is found for 4b 
(Supplementary Fig. 17). Paradoxically, nU decreases with θ for the 
neutral singlet 1[4b], as well as for 2[4b]−, 2[4b]+, 1[4b]2− and 1[4b]2+, 

suggesting that in these species, electron pairing is actually enhanced 
by decoupling of the DIF subunits.

Nucleus-independent chemical shifts (NICS) revealed striking 
variations of magnetism in 4b caused by changes of its oxidation and 
spin state (Fig. 5 and Supplementary Fig. 23). Although the triplet 
state 3[4b] is less aromatic than the singlet 1[4b], the quintet 5[4b] state 
shows enhanced aromaticity. The NICS map obtained for the triplet 
is essentially identical to the map obtained for the diindenofluorenyl 
radical 2[DIF-H], consistent with the weak interaction between DIF 
subunits in 3[4b] found in the PES scan. Thus, the enhancement of 
aromaticity in the singlet and quintet originates from the stronger 
inter-subunit coupling in each of these two spin states. This conclusion 
is supported by the harmonic oscillator model of aromaticity (HOMA; 
Supplementary Table 2), which produced higher indexes of rings B in 
5[4b] (0.89) and 1[4b] (0.71) than in 3[4b] (0.63). The doubly charged 
1[4b]2+ and 1[4b]2− show opposite changes of their magnetism, being 
respectively para- and diatropic. The tetraanion 1[4b]4− experiences a 
dramatic increase in the aromaticity of rings C–D, confirming that it can 
be treated as a union of four fluorenyl anions. In line with this interpre-
tation, the HOMA indices for rings B, C and D, are 0.76, 0.42 and 0.76.

Valence structure of TFF
A unified description of the valence structure of TFF, which is valid 
for all oxidation levels, can be developed using the five canonical 
half-structures A through E*** shown in Fig. 6a. These structures 
differ in (1) the number of Clar sextets, (2) the number of formally 
non-bonding sites (denoted with an asterisk) and (3) the order of the 
linking bond (single or double). For example, there are no Clar sextets 
and no non-bonding sites in structure A, whereas structure B* features 
three sextets and one non-bonding site, that is, either a cation, a radical 
or an anion. Resonance contributors of TFF can be constructed from 
half-structure pairs with matching linking bond orders, for example 
A + A or B* + B* (Fig. 6b,c). Each such contributor can be characterized 
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Fig. 5 | 2D NICS scans performed for selected oxidation levels and 
multiplicities of 4b. a–c, Spin states of the neutral TFF (1[4b] (a), 3[4b] 
(b) and 5[4b] (c)) show an unusual sequence of aromaticity changes 
(quintet > singlet > triplet), resulting from differential mixing of di- and 
tetraradicaloid configurations. d–f, Even more pronounced changes of the 
aromatic character are observed in TFF ions (1[4b]2+ (d), 1[4b]2− (e) and 1[4b]4− (f)). 

The cross-sectional plane (CSP) was located 1 Å above the plane of one of the DIF 
subunits (the other DIF subunit, located in the bottom half of each figure, is tilted 
relative to the CSP). NMR shieldings were evaluated along the normal of the CSP 
using the CAM level of theory. Centres of rings A–D (cf. Fig. 1c) are labelled in a. 
Maps of reference systems are provided in Supplementary Fig. 23.
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by the total number of sextets (NCS) and the number of unpaired elec-
trons (NUE). Given that the stability of the structures is expected to 
increase for high NCS values and low NUE values, one can consider a simple 
stability metric ΔN = NCS − NUE.

Data obtained for the neutral TFF indicate that the triplet state 3[4b] 
is well approximated by the diradical structure B•–B•, containing a single 
bond between the DIF units. Similarly, the tetraradicaloid form D••=D•• 
provides an accurate representation of the quintet 5[4b]. Mixing of these 
two contributions in 1[4b] can be proposed to explain the intermediate 
aromaticity, inter-subunit bond order and high tetraradicaloid character 
of the singlet state. In particular, B•–B• and D••=D•• have the highest ΔN = 4 
among all canonical forms, which explains their relative importance. Dou-
bly charged TFF ions 1[4b]2+ and 1[4b]2− can be similarly characterized with 
singly bonded structures B+–B+ and B−–B−, respectively; however, small 
contributions of the doubly bonded forms D•−=D•− and D•+=D•+ need to be 
invoked to explain the non-zero nU values and non-vanishing inversion 
barriers of these two species. The latter two forms should become domi-
nant in the structures of respective triplets 3[4b]2+ and 3[4b]2−, explaining 
the high ΔEtwist values predicted for these species. Analogous contribu-
tions become even more relevant in the singly charged 2[4b]+ and 2[4b]− 
(D••=D•− and D••=D•+, respectively), both of which are notable for their 
triradicaloid character (nU > 2.5). Finally, the doubly bonded contributors 
fully dominate in the higher anions, 2[4b]3− and 1[4b]4−, which feature the 
highest ΔEtwist barriers, and very low nU values.

Conclusion
In this Article, we have shown how the sterically frustrated alkene bond 
in TFF is affected by the open-shell nature of the π-conjugated sys-
tem. The underlying network of radicaloid sites in TFF is neither linear 
nor cyclic and features a unique doubly bifurcated topology with a 
centrally positioned formal double bond. The strength of the alkene 
bond is controlled by mixing of oligoradicaloid configurations in the 
neutral singlet state, by electron unpairing in high-spin states, and by 
electron transfer in the oxidized and reduced forms of TFF. Changes 
of the oxidation level, spanning seven consecutive states, result in 
profound alteration of the spectroscopic signatures of this unusual π 
system. The pivotal role of the central alkene bond in controlling the π 
conjugation in TFF suggests that, by using similar design principles, it 
may be possible to create molecular organic materials that will change 
their spin state, redox potentials and optical characteristics in response 
to mechanical stimuli.
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