Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Enhanced active-site electric field accelerates enzyme catalysis

Abstract

The design and improvement of enzymes based on physical principles remain challenging. Here we demonstrate that the principle of electrostatic catalysis can be leveraged to substantially improve a natural enzyme’s activity. We enhanced the active-site electric field in horse liver alcohol dehydrogenase by replacing the serine hydrogen-bond donor with threonine and replacing the catalytic Zn2+ with Co2+. Based on the electric field enhancement, we make a quantitative prediction of rate acceleration—50-fold faster than the wild-type enzyme—which was in close agreement with experimental measurements. The effects of the hydrogen bonding and metal coordination, two distinct chemical forces, are described by a unified physical quantity—electric field, which is quantitative, and shown here to be additive and predictive. These results suggest a new design paradigm for both biological and non-biological catalysts.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrostatic catalysis of LADH.
Fig. 2: Metal exchange in the active site of LADH.
Fig. 3: Hydrogen-bond perturbation in the active site of LADH.
Fig. 4: A unifying electrostatic basis for enzyme catalysis and design.

Data availability

The X-ray coordinates and structural factors of LADH variants complexed with NADH and CXF have been deposited in the Protein Data Bank (PDB) as entries 7UQ9 (LADHS48T), 8EIW (LADHCo), 7UTW (LADHCd), 7U9N (LADHS48A), 8EIY (LADHCo,S48T) and 8EIX (LADHCo,S48A). The structure 2OHX was also used in this study and is accessible in the PDB. All the data that support the finding of this study are available within this article, Supplementary Information and provided source data.

References

  1. Radzicka, A. & Wolfenden, R. A proficient enzyme. Science 267, 90–93 (1995).

    Article  PubMed  CAS  Google Scholar 

  2. Risso, V. A., Gavira, J. A., Mejia-Carmona, D. F., Gaucher, E. A. & Sanchez-Ruiz, J. M. Hyperstability and substrate promiscuity in laboratory resurrections of precambrian β-lactamases. J. Am. Chem. Soc. 135, 10580–10580 (2013).

    Article  CAS  Google Scholar 

  3. Huang, P. S., Boyken, S. E. & Baker, D. The coming of age of de novo protein design. Nature 537, 320–327 (2016).

    Article  PubMed  CAS  Google Scholar 

  4. Lovelock, S. L. et al. The road to fully programmable protein catalysis. Nature 606, 49–58 (2022).

    Article  PubMed  CAS  Google Scholar 

  5. Kries, H., Blomberg, R. & Hilvert, D. De novo enzymes by computational design. Curr. Opin. Chem. Biol. 17, 221–228 (2013).

    Article  PubMed  CAS  Google Scholar 

  6. Arnold, F. H. & Volkov, A. A. Directed evolution of biocatalysts. Curr. Opin. Chem. Biol. 3, 54–59 (1999).

    Article  PubMed  CAS  Google Scholar 

  7. Bunzel, H. A. et al. Evolution of dynamical networks enhances catalysis in a designer enzyme. Nat. Chem. 13, 1017–1022 (2021).

    Article  PubMed  CAS  Google Scholar 

  8. Otten, R. et al. How directed evolution reshapes the energy landscape in an enzyme to boost catalysis. Science 370, 1442–1446 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Villa, J. & Warshel, A. Energetics and dynamics of enzymatic reactions. J. Phys. Chem. B 105, 7887–7907 (2001).

    Article  CAS  Google Scholar 

  10. Warshel, A. et al. Electrostatic basis for enzyme catalysis. Chem. Rev. 106, 3210–3235 (2006).

    Article  PubMed  CAS  Google Scholar 

  11. Fried, S. D., Bagchi, S. & Boxer, S. G. Extreme electric fields power catalysis in the active site of ketosteroid isomerase. Science 346, 1510–1514 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Fried, S. D. & Boxer, S. G. Electric fields and enzyme catalysis. Annu. Rev. Biochem. 86, 387–415 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Plapp, B. V. et al. Horse liver alcohol dehydrogenase: zinc coordination and catalysis. Biochemistry 56, 3632–3646 (2017).

    Article  PubMed  CAS  Google Scholar 

  14. Vaissier, V., Sharma, S. C., Schaettle, K., Zhang, T. R. & Head-Gordon, T. Computational optimization of electric fields for improving catalysis of a designed kemp eliminase. ACS Catal. 8, 219–227 (2018).

    Article  CAS  Google Scholar 

  15. Schneider, S. H. & Boxer, S. G. Vibrational Stark effects of carbonyl probes applied to reinterpret IR and Raman data for enzyme inhibitors in terms of electric fields at the active site. J. Phys. Chem. B 120, 9672–9684 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Deng, H., Schindler, J. F., Berst, K. B., Plapp, B. V. & Callender, R. A Raman spectroscopic characterization of bonding in the complex of horse liver alcohol dehydrogenase with NADH and N-cyclohexylformamide. Biochemistry 37, 14267–14278 (1998).

    Article  PubMed  CAS  Google Scholar 

  17. Ramaswamy, S., Scholze, M. & Plapp, B. V. Binding of formamides to liver alcohol dehydrogenase. Biochemistry 36, 3522–3527 (1997).

    Article  PubMed  CAS  Google Scholar 

  18. Zheng, C. et al. A two-directional vibrational probe reveals different electric field orientations in solution and an enzyme active site. Nat. Chem. 14, 891–897 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Dietrich, H., Maret, W., Wallen, L. & Zeppezauer, M. Active‐site‐specific reconstituted cobalt(II) horse‐liver alcohol dehydrogenase: changes of the spectra of the substrate trans‐4‐(N,N‐dimethylamino)‐cinnamaldehyde and of the catalytic cobalt ion upon ternary complex formation with NADH and 1,4,5,6‐tetrahydronicotinamide–adenine dinucleotide. Eur. J. Biochem. 100, 267–270 (1979).

  20. Schneider, G., Cedergren-Zeppezauer, E., Knight, S., Eklund, H. & Zeppezauer, M. Active site specific cadmium(II)-substituted horse liver alcohol dehydrogenase: crystal structures of the free enzyme, its binary complex with NADH, and the ternary complex with NADH and bound p-bromobenzyl alcohol. Biochemistry 24, 7503–7510 (1985).

    Article  PubMed  CAS  Google Scholar 

  21. Schneider, G., Eklund, H., Cedergren-Zeppezauer, E. & Zeppezauer, M. Crystal structures of the active site in specifically metal-depleted and cobalt-substituted horse liver alcohol dehydrogenase derivatives. Proc. Natl Acad. Sci. USA. 80, 5289–5293 (1983).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Schneider, G., Eklund, H., Cedergren-Zeppezauer, E. & Zeppezauer, M. Structure of the complex of active site metal‐depleted horse liver alcohol dehydrogenase and NADH. EMBO J. 2, 685–689 (1983).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Adolph, H. W., Kiefer, M. & Zeppezauer, M. in Enzymology and Molecular Biology of Carbonyl Metabolism 4 (eds Weiner, H. et al.) 401–410 (Springer, 1993).

  24. Adolph, H. W., Maurer, P., Schneider-Bernlohr, H., Sartorius, C. & Zeppezauer, M. Substrate specificity and stereoselectivity of horse liver alcohol dehydrogenase. Kinetic evaluation of binding and activation parameters controlling the catalytic cycles of unbranched, acyclic secondary alcohols and ketones as substrates of the native and active-site-specific Co(II)-substituted enzyme. Eur. J. Biochem. 201, 615–625 (1991).

    Article  PubMed  CAS  Google Scholar 

  25. Al-Karadaghi, S. et al. Refined crystal structure of liver alcohol dehydrogenase-NADH complex at 1.8 Å resolution. Acta Crystallogr. D 50, 793–807 (1994).

    Article  PubMed  CAS  Google Scholar 

  26. Kim, K. & Plapp, B. V. Inversion of substrate stereoselectivity of horse liver alcohol dehydrogenase by substitutions of Ser-48 and Phe-93. Chem. Biol. Interact. 276, 77–87 (2017).

    Article  PubMed  CAS  Google Scholar 

  27. Deng, H. et al. Source of catalysis in the lactate dehydrogenase system. Ground-state interactions in the enzyme–substrate complex. Biochemistry 33, 2297–2305 (1994).

    Article  PubMed  CAS  Google Scholar 

  28. Schneider, S. H., Kratochvil, H. T., Zanni, M. T. & Boxer, S. G. Solvent-independent anharmonicity for carbonyl oscillators. J. Phys. Chem. B 121, 2331–2338 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Fuxreiter, M. & Warshel, A. Origin of the catalytic power of acetylcholinesterase: computer simulation studies. J. Am. Chem. Soc. 120, 183–194 (1998).

    Article  CAS  Google Scholar 

  30. Roca, M., Vardi-Kilshtain, A. & Warshel, A. Toward accurate screening in computer-aided enzyme design. Biochemistry 48, 3046–3056 (2009).

    Article  PubMed  CAS  Google Scholar 

  31. Vaissier Welborn, V. & Head-Gordon, T. Computational design of synthetic enzymes. Chem. Rev. 119, 6613–6630 (2019).

    Article  PubMed  CAS  Google Scholar 

  32. Welborn, V. V., Ruiz Pestana, L. & Head-Gordon, T. Computational optimization of electric fields for better catalysis design. Nat. Catal. 1, 649–655 (2018).

    Article  Google Scholar 

  33. Hennefarth, M. R. & Alexandrova, A. N. Direct look at the electric field in ketosteroid isomerase and its variants. ACS Catal. 10, 9915–9924 (2020).

    Article  CAS  Google Scholar 

  34. Raj, S. B., Ramaswamy, S. & Plapp, B. V. Yeast alcohol dehydrogenase structure and catalysis. Biochemistry 53, 5791–5803 (2014).

    Article  PubMed  CAS  Google Scholar 

  35. Niederhut, M. S., Gibbons, B. J., Perez-Miller, S. & Hurley, T. D. Three-dimensional structures of the three human class I alcohol dehydrogenases. Protein Sci. 10, 697–706 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Fried, S. D. & Boxer, S. G. Measuring electric fields and noncovalent interactions using the vibrational Stark effect. Acc. Chem. Res. 48, 998–1006 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Vaissier Welborn, V., Archer, W. R. & Schulz, M. D. Characterizing ion–polymer interactions in aqueous environment with electric fields. J. Chem. Inf. Model. 63, 2030–2036 (2023).

    Article  PubMed  CAS  Google Scholar 

  38. Griffith, J. S. & Orgel, L. E. Ligand-field theory. Q. Rev. 11, 381–393 (1957).

    Article  CAS  Google Scholar 

  39. Anslyn, E. V. & Dougherty, D. A. Modern Physical Organic Chemistry (University Science, 2006).

  40. Drago, R. S., Vogel, G. C. & Needham, T. E. 4-parameter equation for predicting enthalpies of adduct formation. J. Am. Chem. Soc. 93, 6014–6026 (1971).

    Article  CAS  Google Scholar 

  41. Lin, C. Y., Romei, M. G., Mathews, I. I. & Boxer, S. G. Energetic basis and design of enzyme function demonstrated using GFP, an excited-state enzyme. J. Am. Chem. Soc. 144, 3968–3978 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Anishchenko, I. et al. De novo protein design by deep network hallucination. Nature 600, 547–552 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Wang, J. et al. Scaffolding protein functional sites using deep learning. Science 377, 387–394 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Shaik, S. S. & Stuyver, T. Effects of Electric Fields on Structure and Reactivity: New Horizons in Chemistry (Royal Society of Chemistry, 2021).

  45. Shaik, S., Danovich, D., Joy, J., Wang, Z. & Stuyver, T. Electric-field mediated chemistry: uncovering and exploiting the potential of (oriented) electric fields to exert chemical catalysis and reaction control. J. Am. Chem. Soc. 142, 12551–12562 (2020).

    Article  PubMed  CAS  Google Scholar 

  46. Shaik, S., Mandal, D. & Ramanan, R. Oriented electric fields as future smart reagents in chemistry. Nat. Chem. 8, 1091–1098 (2016).

    Article  PubMed  CAS  Google Scholar 

  47. Aragones, A. C. et al. Electrostatic catalysis of a diels-alder reaction. Nature 531, 88–91 (2016).

    Article  PubMed  CAS  Google Scholar 

  48. Zang, Y. P. et al. Directing isomerization reactions of cumulenes with electric fields. Nat. Commun. 10, 4482 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank B. V. Plapp at the University of Iowa for providing detailed guidance on the expression and purification of LADH and much other valuable advice. We thank I. Andersson at Uppsala University and W. Maret at King’s College London for their advice on the metal substitution of LADH. We thank A. Braun, A. Heyer and M. Brueggemeyer for the data analysis and discussion of LADHCo; G. Li at the Stanford Environmental Measurements Facility (EMF) for the inductively coupled plasma atomic emission spectroscopy data collection; T. McLaughlin from Stanford University Mass Spectrometry (SUMS) for the measurements of native mass spectrometry; T. Carver at the Stanford Nano Shared Facilities (SNSF) for nickel coating Stark windows. C.Z. is grateful for a Stanford Center for Molecular Analysis and Design (CMAD) Fellowship. This work was supported by NIH grant GM118044 (to S.G.B.). Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under contract number DE-AC02-76SF00515. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research, and by the National Institutes of Health, National Institute of General Medical Sciences (P30GM133894). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of NIGMS or NIH. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the paper.

Author information

Authors and Affiliations

Authors

Contributions

C.Z. and S.G.B. designed the research. C.Z. and Z.J. performed most of the experiments and data analysis, including expression and purification of LADH variants, metal substitution of LADH, infrared spectroscopy and enzyme kinetic studies. C.Z. and I.I.M. performed X-ray crystallography and solved the crystal structures of LADH variants. C.Z., Z.J. and S.G.B discussed the results and wrote the paper.

Corresponding author

Correspondence to Steven G. Boxer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

Source Data Fig. 2

Numerical data for optical spectra and enzyme kinetics.

Source Data Fig. 2

X-ray crystallographic data.

Source Data Fig. 3

Numerical data for optical spectra and enzyme kinetics.

Source Data Fig. 3

X-ray crystallographic data.

Source Data Fig. 4

Numerical data for optical spectra and scatter plots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, C., Ji, Z., Mathews, I.I. et al. Enhanced active-site electric field accelerates enzyme catalysis. Nat. Chem. 15, 1715–1721 (2023). https://doi.org/10.1038/s41557-023-01287-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01287-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing