Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultrafast formation dynamics of D3+ from the light-driven bimolecular reaction of the D2–D2 dimer

Abstract

The light-driven formation of trihydrogen cation has been attracting considerable attention because of its important role as an initiator of chemical reactions in interstellar clouds. To understand the formation dynamics, most previous studies focused on creating H3+ or D3+ from unimolecular reactions of various organic molecules. Here we observe and characterize the ultrafast formation dynamics of D3+ from a bimolecular reaction, using pump–probe experiments that employ ultrashort laser pulses to probe its formation from a D2–D2 dimer. Our molecular dynamics simulations provide an intuitive representation of the reaction dynamics, which agree well with the experimental observation. We also show that the emission direction of D3+ can be controlled using a tailored two-colour femtosecond laser field. The underlying control mechanism is in line with what is known from the light control of electron localization in the bond breaking of single molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the experiments.
Fig. 2: Results of single-colour pump–probe experiments.
Fig. 3: Potential energy surface of the T-type cationic (D2–D2)+ dimer.
Fig. 4: Molecular dynamics simulation results.
Fig. 5: Asymmetric emission of D3+ and D+ in the (D3+, D+) channel.

Similar content being viewed by others

Data availability

The data that support the plots within this article are available from the Zenodo database at https://doi.org/10.5281/zenodo.7807812.

Code availability

The code that supports the plots within this article is available from the corresponding authors upon reasonable request.

References

  1. Eland, J. H. D. The origin of primary H3+ ions in mass spectra. Rapid Commun. Mass Spectrom. 10, 1560–1562 (1996).

    CAS  Google Scholar 

  2. Furukawa, Y., Hoshina, K., Yamanouchi, K. & Nakano, H. Ejection of triatomic hydrogen molecular ion from methanol in intense laser fields. Chem. Phys. Lett. 414, 117–121 (2005).

    CAS  Google Scholar 

  3. Okino, T. et al. Ejection dynamics of hydrogen molecular ions from methanol in intense laser fields. J. Phys. B At. Mol. Opt. Phys. 39, S515–S521 (2006).

    CAS  Google Scholar 

  4. Okino, T. et al. Coincidence momentum imaging of ultrafast hydrogen migration in methanol and its isotopomers in intense laser fields. Chem. Phys. Lett. 423, 220–224 (2006).

    CAS  Google Scholar 

  5. Hoshina, K., Furukawa, Y., Okino, T. & Yamanouchi, K. Efficient ejection of H3+ from hydrocarbon molecules induced by ultrashort intense laser fields. J. Chem. Phys. 129, 104302 (2008).

    PubMed  Google Scholar 

  6. Kraus, P. M. et al. Unusual mechanism for H3+ formation from ethane as obtained by femtosecond laser pulse ionization and quantum chemical calculations. J. Chem. Phys. 134, 114302 (2011).

    PubMed  Google Scholar 

  7. Schirmel, N., Reusch, N., Horsch, P. & Weitzel, K. M. Formation of fragment ions (H+, H3+, CH3+) from ethane in intense femtosecond laser fields—from understanding to control. Faraday Discuss. 163, 461–474 (2013).

    CAS  PubMed  Google Scholar 

  8. Kotsina, N., Kaziannis, S. & Kosmidis, C. Phase dependence of OD+, HOD+, and H3+ ions released from the deuterated dication of methanol under ω/2ω laser field irradiation. Int. J. Mass Spectrom. 380, 34–39 (2015).

    CAS  Google Scholar 

  9. Ando, T. et al. Coherent vibrations in methanol cation probed by periodic H3+ ejection after double ionization. Commun. Chem. 1, 7 (2018).

    Google Scholar 

  10. Kübel, M. et al. Steering proton migration in hydrocarbons using intense few-cycle laser fields. Phys. Rev. Lett. 116, 193001 (2016).

    PubMed  Google Scholar 

  11. Ekanayake, N. et al. Mechanisms and time-resolved dynamics for trihydrogen cation (H3+) formation from organic molecules in strong laser fields. Sci. Rep. 7, 4703 (2017).

    PubMed  PubMed Central  Google Scholar 

  12. Ekanayake, N. et al. H2 roaming chemistry and the formation of H3+ from organic molecules in strong laser fields. Nat. Commun. 9, 5186 (2018).

    PubMed  PubMed Central  Google Scholar 

  13. Livshits, E. et al. Time-resolving the ultrafast H2 roaming chemistry and H3+ formation using extreme-ultraviolet pulses. Commun. Chem. 3, 49 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Alghabra, M. S. et al. Anomalous formation of trihydrogen cations from water on nanoparticles. Nat. Commun. 12, 3839 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tennyson, J. Spectroscopy of H3+: planets, chaos and the Universe. Rep. Prog. Phys. 58, 421–476 (1995).

    CAS  Google Scholar 

  16. Miller, S., Tennyson, J., Geballe, T. R. & Stallard, T. Thirty years of H3+ astronomy. Rev. Mod. Phys. 92, 035003 (2020).

    CAS  Google Scholar 

  17. McCall Benjamin, J. & Oka, T. H3+—an ion with many talents. Science 287, 1941–1942 (2000).

    Google Scholar 

  18. McGuire, B. A., Asvany, O., Brünken, S. & Schlemmer, S. Laboratory spectroscopy techniques to enable observations of interstellar ion chemistry. Nat. Rev. Phys. 2, 402–410 (2020).

    CAS  Google Scholar 

  19. Hogness, T. R. & Lunn, E. G. The ionization of hydrogen by electron impact as interpreted by positive ray analysis. Phys. Rev. 26, 44–55 (1925).

    CAS  Google Scholar 

  20. Doverspike, L. D. & Champion, R. L. Experimental investigations of ion–molecule reactions of D2+ with D2 and H2. J. Chem. Phys. 46, 4718–4725 (1967).

    CAS  Google Scholar 

  21. Krenos, J. R. et al. Crossed-beam study of the reactions of H2+ with D2 and D2+ with H2. Chem. Phys. 16, 109–116 (1976).

    CAS  Google Scholar 

  22. Pollard, J. E., Lichtin, D. A. & Cohen, R. B. Differential cross sections for state-selected reactions in the H2+ + H2 system. Chem. Phys. Lett. 152, 171–176 (1988).

    CAS  Google Scholar 

  23. Zhang, Y. et al. Formation of H3+ from ethane dication induced by electron impact. Commun. Chem. 3, 160 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. De, S. et al. Formation of H3+ due to intramolecular bond rearrangement in doubly charged methanol. Phys. Rev. Lett. 97, 213201 (2006).

    PubMed  Google Scholar 

  25. Jochim, B. et al. Rapid formation of H3+ from ammonia and methane following 4 MeV proton impact. J. Phys. B At. Mol. Opt. Phys. 42, 091002 (2009).

    Google Scholar 

  26. Oka, T. Observation of the infrared spectrum of H3+. Phys. Rev. Lett. 45, 531–534 (1980).

    CAS  Google Scholar 

  27. Wang, E., Ren, X. & Dorn, A. Role of the environment in quenching the production of H3+ from dicationic clusters of methanol. Phys. Rev. Lett. 126, 103402 (2021).

    CAS  PubMed  Google Scholar 

  28. Kushawaha, R. K. & Bapat, B. Fragmentation dynamics of the methanol dication. Chem. Phys. Lett. 463, 42–46 (2008).

    CAS  Google Scholar 

  29. Okino, T., Watanabe, A., Xu, H. & Yamanouchi, K. Two-body Coulomb explosion in methylacetylene in intense laser fields: double proton migration and proton/deuteron exchange. Phys. Chem. Chem. Phys. 14, 4230–4235 (2012).

    CAS  PubMed  Google Scholar 

  30. Kling, M. F. et al. Control of electron localization in molecular dissociation. Science 312, 246–248 (2006).

    CAS  PubMed  Google Scholar 

  31. Ray, D. et al. Ion-energy dependence of asymmetric dissociation of D2 by a two-color laser field. Phys. Rev. Lett. 103, 223201 (2009).

    CAS  PubMed  Google Scholar 

  32. Gong, X. et al. Two-dimensional directional proton emission in dissociative ionization of H2. Phys. Rev. Lett. 113, 203001 (2014).

    PubMed  Google Scholar 

  33. Li, H. et al. Sub-cycle directional control of the dissociative ionization of H2 in tailored femtosecond laser fields. J. Phys. B At. Mol. Opt. Phys. 50, 172001 (2017).

    Google Scholar 

  34. Zuo, T. & Bandrauk, A. D. Charge-resonance-enhanced ionization of diatomic molecular ions by intense lasers. Phys. Rev. A 52, R2511–R2514 (1995).

    CAS  PubMed  Google Scholar 

  35. Staudte, A. et al. Angular tunneling ionization probability of fixed-in-space H2 molecules in intense laser pulses. Phys. Rev. Lett. 102, 033004 (2009).

    CAS  PubMed  Google Scholar 

  36. Bocharova, I. A. et al. Direct Coulomb-explosion imaging of coherent nuclear dynamics induced by few-cycle laser pulses in light and heavy hydrogen. Phys. Rev. A 77, 053407 (2008).

    Google Scholar 

  37. Mi, Y. et al. Clocking enhanced ionization of hydrogen molecules with rotational wave packets. Phys. Rev. Lett. 125, 173201 (2020).

    CAS  PubMed  Google Scholar 

  38. Qiang, J. et al. Femtosecond rotational dynamics of D2 molecules in superfluid helium nanodroplets. Phys. Rev. Lett. 128, 243201 (2022).

    CAS  PubMed  Google Scholar 

  39. Khan, A. et al. Visualizing the geometry of hydrogen dimers. J. Phys. Chem. Lett. 11, 2457–2463 (2020).

    CAS  PubMed  Google Scholar 

  40. Ma, J. et al. Transient valence charge localization in strong-field dissociative ionization of HCl molecules. Phys. Rev. Lett. 127, 183201 (2021).

    CAS  PubMed  Google Scholar 

  41. Wu, J. et al. Comparison of dissociative ionization of H2, N2, Ar2, and CO by elliptically polarized two-color pulses. Phys. Rev. A 87, 023406 (2013).

    Google Scholar 

  42. Dörner, R. et al. Cold target recoil ion momentum spectroscopy: a ‘momentum microscope’ to view atomic collision dynamics. Phys. Rep. 330, 95–192 (2000).

    Google Scholar 

  43. Ullrich, J. et al. Recoil-ion and electron momentum spectroscopy: reaction-microscopes. Rep. Prog. Phys. 66, 1463–1545 (2003).

    CAS  Google Scholar 

  44. Fdez. Galván, I. et al. OpenMolcas: from source code to insight. J. Chem. Theory Comput. 15, 5925–5964 (2019).

    PubMed  Google Scholar 

  45. Mai, S. et al. SHARC2.1: surface hopping including arbitrary couplings—program package for non-adiabatic dynamics. sharc-md.org (2019).

  46. Mai, S., Marquetand, P. & González, L. Nonadiabatic dynamics: the SHARC approach. WIREs Comput. Mol. Sci. 8, e1370 (2018).

    Google Scholar 

  47. Dahl, J. P. & Springborg, M. The Morse oscillator in position space, momentum space, and phase space. J. Chem. Phys. 88, 4535–4547 (1988).

    CAS  Google Scholar 

  48. Schinke, R. Photodissociation Dynamics: Spectroscopy and Fragmentation of Small Polyatomic Molecules (Cambridge Univ. Press, 1993).

  49. Granucci, G., Persico, M. & Toniolo, A. Direct semiclassical simulation of photochemical processes with semiempirical wave functions. J. Chem. Phys. 114, 10608–10615 (2001).

    CAS  Google Scholar 

  50. Granucci, G., Persico, M. & Zoccante, A. Including quantum decoherence in surface hopping. J. Chem. Phys. 133, 134111 (2010).

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (grant number 2018YFA0306303 to J. Wu), National Natural Science Fund (grants numbers 11834004, 12241407 and 12227807 to J. Wu, 12174109 to P.L., 92050105 to K.L., 92150105 to H.N. and 22173017 to J. Wen) and Science and Technology Commission of Shanghai Municipality (20JC1414900 to M.Z. and 21ZR1420100 to H.N.). K.L. acknowledges support from the Alexander Von Humboldt Foundation. R.D. acknowledges support from the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Contributions

L.Z., Z.J., J.Q., W.J., P.L., K.L. and J. Wu contributed to the experiments. H.N., J. Wen and M.Z. performed the simulation. L.Z., Z.J., W.Z., P.L., K.L., R.D. and J. Wu analysed the data. All authors contributed to writing the manuscript. K.L. and J. Wu supervised the project.

Corresponding authors

Correspondence to Jin Wen, Kang Lin or Jian Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Marcos Dantus and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Video 1

Molecular dynamics: structural evolution of the T shape (D2–D2)+ to form (D3+, D).

Supplementary Video 2

Molecular dynamics: structural evolution of the L shape (D2–D2)+ to form (D3+, D).

Supplementary Video 3

Molecular dynamics: structural evolution of the H shape (D2–D2)+ to form (D3+, D).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Ni, H., Jiang, Z. et al. Ultrafast formation dynamics of D3+ from the light-driven bimolecular reaction of the D2–D2 dimer. Nat. Chem. 15, 1229–1235 (2023). https://doi.org/10.1038/s41557-023-01230-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01230-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing