Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient photon upconversion enabled by strong coupling between silicon quantum dots and anthracene

Abstract

Hybrid structures formed between organic molecules and inorganic quantum dots can accomplish unique photophysical transformations by taking advantage of their disparate properties. The electronic coupling between these materials is typically weak, leading photoexcited charge carriers to spatially localize to the dot or to a molecule at its surface. However, we show that by converting a chemical linker that covalently binds anthracene molecules to silicon quantum dots from a carbon–carbon single bond to a double bond, we access a strong coupling regime where excited carriers spatially delocalize across both anthracene and silicon. By pushing the system to delocalize, we design a photon upconversion system with a higher efficiency (17.2%) and lower threshold intensity (0.5 W cm–2) than that of a corresponding weakly coupled system. Our results show that strong coupling between molecules and nanostructures achieved through targeted linking chemistry provides a complementary route for tailoring properties in materials for light-driven applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure and absorption spectra of Si QDs.
Fig. 2: State energies and upconversion emission spectra of Si:9VA.
Fig. 3: Computed electronic structure of Si:9EA and Si:9VA.
Fig. 4: Photoexcited kinetics of Si:9EA and Si:9VA.
Fig. 5: Controlling the energy of Si:9VA’s T1 state via strong coupling.

Similar content being viewed by others

Data availability

Source data are provided with this paper. Additional source data for figures contained in the Supplementary Information are available from the authors upon request.

References

  1. Brett, M. W., Gordon, C. K., Hardy, J. & Davis, N. J. L. K. The rise and future of discrete organic–inorganic hybrid nanomaterials. ACS Phys. Chem. Au 2, 367–387 (2022).

    Google Scholar 

  2. Garakyaraghi, S. & Castellano, F. N. Nanocrystals for triplet sensitization: molecular behavior from quantum-confined materials. Inorg. Chem. 57, 2351–2359 (2018).

    CAS  PubMed  Google Scholar 

  3. Huang, Z. & Tang, M. L. Semiconductor nanocrystal light absorbers for photon upconversion. J. Phys. Chem. Lett. 9, 6198–6206 (2018).

    CAS  PubMed  Google Scholar 

  4. Frederick, M. T., Amin, V. A. & Weiss, E. A. Optical properties of strongly coupled quantum dot−ligand systems. J. Phys. Chem. Lett. 4, 634–640 (2013).

    CAS  PubMed  Google Scholar 

  5. Lu, H. et al. Transforming energy using quantum dots. Energy Environ. Sci. 13, 1347–1376 (2020).

    Google Scholar 

  6. Rao, A. & Friend, R. H. Harnessing singlet exciton fission to break the Shockley–Queisser limit. Nat. Rev. Mater. 2, 17063 (2017).

    CAS  Google Scholar 

  7. Kroupa, D. M. et al. Control of energy flow dynamics between tetracene ligands and PbS quantum dots by size tuning and ligand coverage. Nano Lett. 18, 865–873 (2018).

    CAS  PubMed  Google Scholar 

  8. Allardice, J. R. et al. Engineering molecular ligand shells on quantum dots for quantitative harvesting of triplet excitons generated by singlet fission. J. Am. Chem. Soc. 141, 12907–12915 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lu, H., Chen, X., Anthony, J. E., Johnson, J. C. & Beard, M. C. Sensitizing singlet fission with perovskite nanocrystals. J. Am. Chem. Soc. 141, 4919–4927 (2019).

    CAS  PubMed  Google Scholar 

  10. Han, Z., Qiu, F., Eisenberg, R., Holland, P. L. & Krauss, T. D. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 338, 1321–1324 (2012).

    CAS  PubMed  Google Scholar 

  11. Imperiale, C. J., Green, P. B., Hasham, M. & Wilson, M. W. B. Ultra-small PbS nanocrystals as sensitizers for red-to-blue triplet-fusion upconversion. Chem. Sci. 12, 14111–14120 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Jiang, Y., Wang, C., Rogers, C. R., Kodaimati, M. S. & Weiss, E. A. Regio- and diastereoselective intermolecular [2+2] cycloadditions photocatalysed by quantum dots. Nat. Chem. 11, 1034–1040 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Jiang, Y. & Weiss, E. A. Colloidal quantum dots as photocatalysts for triplet excited state reactions of organic molecules. J. Am. Chem. Soc. 142, 15219–15229 (2020).

    CAS  PubMed  Google Scholar 

  14. Brown, K. A., Dayal, S., Ai, X., Rumbles, G. & King, P. W. Controlled assembly of hydrogenase-CdTe nanocrystal hybrids for solar hydrogen production. J. Am. Chem. Soc. 132, 9672–9680 (2010).

    CAS  PubMed  Google Scholar 

  15. Mongin, C., Moroz, P., Zamkov, M. & Castellano, F. N. Thermally activated delayed photoluminescence from pyrenyl-functionalized CdSe quantum dots. Nat. Chem. 10, 225–230 (2018).

    CAS  PubMed  Google Scholar 

  16. Wu, M. et al. Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals. Nat. Photon. 10, 31–34 (2015).

    Google Scholar 

  17. Huang, Z. et al. Hybrid molecule–nanocrystal photon upconversion across the visible and near-infrared. Nano Lett. 15, 5552–5557 (2015).

    CAS  PubMed  Google Scholar 

  18. Marcus, R. A. On the theory of oxidation-reduction reactions involving electron transfer. I. J. Chem. Phys. 24, 966–978 (1956).

    CAS  Google Scholar 

  19. Forster, T. Zwischenmolekulare energiewanderung und fluoreszenz. Ann. Phys. 6, 55–75 (1938).

    Google Scholar 

  20. Dexter, D. L. A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836 (1953).

    CAS  Google Scholar 

  21. Frederick, M. T., Amin, V. A., Cass, L. C. & Weiss, E. A. A molecule to detect and perturb the confinement of charge carriers in quantum dots. Nano Lett. 11, 5455–5460 (2011).

    CAS  PubMed  Google Scholar 

  22. Westmoreland, D. E., López-Arteaga, R. & Weiss, E. A. N-heterocyclic carbenes as reversible exciton-delocalizing ligands for photoluminescent quantum dots. J. Am. Chem. Soc. 142, 2690–2696 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lian, S., Weinberg, D. J., Harris, R. D., Kodaimati, M. S. & Weiss, E. A. Subpicosecond photoinduced hole transfer from a CdS quantum dot to a molecular acceptor bound through an exciton-delocalizing ligand. ACS Nano 10, 6372–6382 (2016).

    CAS  PubMed  Google Scholar 

  24. He, S. et al. Engineering sensitized photon upconversion efficiency via nanocrystal wavefunction and molecular geometry. Angew. Chem. Int. Ed. 59, 17726–17731 (2020).

    CAS  Google Scholar 

  25. Xia, P. et al. On the efficacy of anthracene isomers for triplet transmission from CdSe nanocrystals. Chem. Commun. 53, 1241–1244 (2017).

    CAS  Google Scholar 

  26. Yanai, N. & Kimizuka, N. New triplet sensitization routes for photon upconversion: thermally activated delayed fluorescence molecules, inorganic nanocrystals, and singlet-to-triplet absorption. Acc. Chem. Res. 50, 2487–2495 (2017).

    CAS  PubMed  Google Scholar 

  27. Nienhaus, L. et al. Speed limit for triplet-exciton transfer in solid-state PbS nanocrystal-sensitized photon upconversion. ACS Nano 11, 7848–7857 (2017).

    CAS  PubMed  Google Scholar 

  28. Xia, P. et al. Achieving spin-triplet exciton transfer between silicon and molecular acceptors for photon upconversion. Nat. Chem. 12, 137–144 (2020).

    CAS  PubMed  Google Scholar 

  29. Carroll, G. M., Limpens, R. & Neale, N. R. Tuning confinement in colloidal silicon nanocrystals with saturated surface ligands. Nano Lett. 18, 3118–3124 (2018).

    CAS  PubMed  Google Scholar 

  30. Dohnalova, K., Saeed, S., Poddubny, A. N., Prokofiev, A. A. & Gregorkiewicz, T. Thermally activated emission from direct bandgap-like silicon quantum dots. ECS J. Solid State Sci. Technol. 2, R97–R99 (2013).

    CAS  Google Scholar 

  31. Anthony, R. J., Cheng, K.-Y., Holman, Z. C., Holmes, R. J. & Kortshagen, U. R. An all-gas-phase approach for the fabrication of silicon nanocrystal light-emitting devices. Nano Lett. 12, 2822–2825 (2012).

    CAS  PubMed  Google Scholar 

  32. Li, Z. & Kortshagen, U. R. Aerosol-phase synthesis and processing of luminescent silicon nanocrystals. Chem. Mater. 31, 8451–8458 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Leung, K. & Whaley, K. B. Electron-hole interactions in silicon nanocrystals. Phys. Rev. B 56, 7455–7468 (1997).

    CAS  Google Scholar 

  34. Montalti, M., Credi, A., Prodi, L. & Gandolfi, M. T. Handbook of Photochemistry 3rd edn (CRC Press/Taylor and Francis, 2006).

  35. Birks, B. & Slifkin, M. A. π-Electronic excitation and ionization energies of condensed ring aromatic hydrocarbons. Nature 191, 761–764 (1961).

    CAS  Google Scholar 

  36. Clarke, R. H. & Hochstrasser, R. M. Location and assignment of the lowest triplet state of perylene. J. Mol. Spectrosc. 32, 309–319 (1969).

    CAS  Google Scholar 

  37. Albrecht, W. G., Michel-Beyerle, M. E. & Yakhot, V. Exciton fission in excimer forming crystal. Dynamics of an excimer build-up in α-perylene. Chem. Phys. 35, 193–200 (1978).

    CAS  Google Scholar 

  38. Giri, G., Prodhan, S., Pati, Y. A. & Ramasesha, S. A model exact study of the properties of low-lying electronic states of perylene and substituted perylenes. J. Phys. Chem. A 122, 8650–8658 (2018).

    CAS  PubMed  Google Scholar 

  39. Evans, D. F. Perturbation of singlet–triplet transitions of aromatic molecules by oxygen under pressure. J. Chem. Soc. 1957, 1351–1357 (1957).

  40. Follstaedt, D. M. Relative free energies of Si surfaces. Appl. Phys. Lett. 62, 1116–1118 (1993).

    CAS  Google Scholar 

  41. Jaccodine, R. J. Surface energy of germanium and silicon. J. Electrochem. Soc. 110, 524 (1963).

    CAS  Google Scholar 

  42. Eaglesham, D. J., White, A. E., Feldman, L. C., Moriya, N. & Jacobson, D. C. Equilibrium shape of Si. Phys. Rev. Lett. 70, 1643–1646 (1993).

    CAS  PubMed  Google Scholar 

  43. Lu, G.-H., Huang, M., Cuma, M. & Liu, F. Relative stability of Si surfaces: a first-principles study. Surf. Sci. 588, 61–70 (2005).

    CAS  Google Scholar 

  44. Prendergast, D., Grossman, J. C. & Galli, G. The electronic structure of liquid water within density-functional theory. J. Chem. Phys. 123, 014501 (2005).

    PubMed  Google Scholar 

  45. Guerra, J. A., Tejada, A., Töfflinger, J. A., Grieseler, R. & Korte, L. Band-fluctuations model for the fundamental absorption of crystalline and amorphous semiconductors: a dimensionless joint density of states analysis. J. Phys. D. 52, 105303 (2019).

    Google Scholar 

  46. O’Leary, S. K. & Malik, S. M. A simplified joint density of states analysis of hydrogenated amorphous silicon. J. Appl. Phys. 92, 4276–4282 (2002).

    Google Scholar 

  47. Kokalj, A. Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Comput. Mater. Sci. 28, 155–168 (2003).

    CAS  Google Scholar 

  48. Shida, T. & Iwata, S. Electronic spectra of ion radicals and their molecular orbital interpretation. III. Aromatic hydrocarbons. J. Am. Chem. Soc. 95, 3473–3483 (1973).

    CAS  Google Scholar 

  49. Hiratsuka, H. & Tanizaki, Y. Polarized absorption spectra of aromatic radicals in stretched polymer film. 2. Radical ions of anthracene and pyrene. J. Phys. Chem. 83, 2501–2505 (1979).

    CAS  Google Scholar 

  50. Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961).

    CAS  Google Scholar 

  51. Anderson, P. W. Localized magnetic states in metals. Phys. Rev. 124, 41–53 (1961).

    CAS  Google Scholar 

  52. Fallon, K. J. et al. Molecular engineering of chromophores to enable triplet–triplet annihilation upconversion. J. Am. Chem. Soc. 142, 19917–19925 (2020).

    CAS  PubMed  Google Scholar 

  53. Gorman, J. et al. Excimer formation in carboxylic acid-functionalized perylene diimides attached to silicon dioxide nanoparticles. J. Phys. Chem. C 123, 3433–3440 (2019).

    CAS  Google Scholar 

  54. Huang, Z., Simpson, D. E., Mahboub, M., Li, X. & Tang, M. L. Ligand enhanced upconversion of near-infrared photons with nanocrystal light absorbers. Chem. Sci. 7, 4101–4104 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Zheng, Y. et al. Influence of molecular aggregation on electron transfer at the perylene diimide/indium-tin oxide interface. ACS Appl. Mater. Interfaces 8, 34089–34097 (2016).

    CAS  PubMed  Google Scholar 

  56. Cadena, D. M. et al. Aggregation of charge acceptors on nanocrystal surfaces alters rates of photoinduced electron transfer. J. Am. Chem. Soc. 144, 22676–22688 (2022).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation grant CMMI-2053567. Work at the University of Texas at Austin was additionally supported by the Welch Foundation (grant F-1885). Aspects of this work undertaken at the University of Colorado Boulder and the University of Texas at Austin were supported by the W. M. Keck Foundation (grant 22605). Work at the University of California, Riverside was also supported by Air Force Office of Scientific Research grant FA9550-20-1-0112. This work used the Summit supercomputer, which is supported by the National Science Foundation (awards ACI-1532235 and ACI-1532236), the University of Colorado Boulder and Colorado State University. The Summit supercomputer is a joint effort of the University of Colorado Boulder and Colorado State University.

Author information

Authors and Affiliations

Authors

Contributions

K.W. conducted the nanocrystal functionalization, photon upconversion and nanosecond TA experiments. R.P.C. performed the electronic structure calculations; J.S., the non-thermal plasma synthesis; and J.M.S. the subnanosecond TA. K.W., J.S., L.M. and M.L.T. conceived of the project. R.P.C. and J.D.E. designed the electronic structure calculations. S.T.R. composed the manuscript with substantial contributions from all authors.

Corresponding authors

Correspondence to Sean T. Roberts, Lorenzo Mangolini, Joel D. Eaves or Ming Lee Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13, Tables 1–3 and discussion.

Source data

Source Data Fig. 1

Absorption spectra of chemically functionalized silicon QDs.

Source Data Fig. 2

Upconversion emission spectra of photon upconversion systems based on Si:9VA.

Source Data Fig. 3

Triplet exciton DOS computed for Si:9EA and Si:9VA.

Source Data Fig. 4

TA spectra of Si:9EA and Si:9VA.

Source Data Fig. 5

Changes in TA signals and upconversion emission spectra of Si:9EA and Si:9VA systems with changing anthracene surface concentration.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Cline, R.P., Schwan, J. et al. Efficient photon upconversion enabled by strong coupling between silicon quantum dots and anthracene. Nat. Chem. 15, 1172–1178 (2023). https://doi.org/10.1038/s41557-023-01225-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01225-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing