Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regio- and enantioselective remote dioxygenation of internal alkenes

Abstract

Methods for the enantioselective direct oxygenation of internal alkenes have provided chemists with versatile and powerful toolboxes for the synthesis of optically pure alcohols, one of the most privileged structural motifs. Regioselectivity, however, remains a formidable challenge in the functionalization of internal alkenes. Here we report a palladium-catalysed highly regio- and enantioselective remote 1,n-dioxygenation (n ≥ 4) of internal alkenes with engineered pyridine-oxazoline (Pyox) ligands. The reactions proceed efficiently and exhibit a broad substrate scope with excellent regio- and enantioselectivity, affording optically pure 1,n-diol acetates as the key synthons for important bioactive molecules. Experimental studies and density functional theory calculations provide evidence that the regioselectivity is governed by the reactivity disparity of two allylic C–H bonds, where the oxypalladation is reversible and the first palladium migration step proves to be the regioselectivity-determining step, enabled by the modified phenyl-substituted Pyox ligands.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Selective functionalization of internal alkenes (using 2-pentene as a representative substrate).
Fig. 2: Regio- and enantioselective 1,n-dioxygenation of internal alkenes.
Fig. 3: Mechanistic investigation.
Fig. 4: Key results from the DFT calculations.
Fig. 5: Synthetic applications.

Similar content being viewed by others

Data availability

The experiments and DFT calculation data supporting the findings of this study are available in this article and its Supplementary Information. Crystallographic data for structures 23a and 70a have been deposited at the Cambridge Crystallographic Data Centre, under deposition nos. CCDC 2201049 and 2127361. Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. The DFT calculations on the regioselective and enantioselective remote dioxygenation of internal alkenes are available at https://doi.org/10.6084/m9.figshare.21655823.

References

  1. Carruthers, W. & Coldham, I. in Modern Methods of Organic Synthesis 315–369 (Cambridge Univ. Press, 2012).

  2. McDonald, R. I., Liu, G. & Stahl, S. S. Palladium(II)-catalyzed alkene functionalization via nucleopalladation: stereochemical pathways and enantioselective catalytic applications. Chem. Rev. 111, 2981–3019 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mueller, T. E. & Tada, M. Hydroamination: direct addition of amines to alkenes and alkynes. Chem. Rev. 108, 3795–3892 (2008).

    Article  CAS  Google Scholar 

  4. Beller, M., Seayad, J., Tillack, A. & Jiao, H. Catalytic Markovnikov and anti-Markovnikov functionalization of alkenes and alkynes: recent developments and trends. Angew. Chem. Int. Ed. 43, 3368–3398 (2004).

    Article  CAS  Google Scholar 

  5. Coombs, J. R. & Morken, J. P. Catalytic enantioselective functionalization of unactivated terminal alkenes. Angew. Chem. Int. Ed. 55, 2636–2649 (2016).

    Article  CAS  Google Scholar 

  6. Vilches-Herrera, V., Domke, L. & Börner, A. Isomerization-hydroformylation tandem reactions. ACS Catal. 4, 1706–1724 (2014).

    Article  CAS  Google Scholar 

  7. Vasseur, A., Bruffaerts, J. & Marek, I. Remote functionalization through alkene isomerization. Nat. Chem. 8, 209–219 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Seayad, A. & Beller, M. Internal olefins to linear amines. Science 297, 1676–1678 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Yuki, Y. & Nozaki, K. Tandem isomerization/hydroformylation/hydrogenation of internal alkenes to n-alcohols using Rh/Ru dual- or ternary-catalyst systems. J. Am. Chem. Soc. 135, 17393–17400 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Zhou, F., Zhang, Y., Xu, X. & Zhu, S. NiH-catalyzed remote asymmetric hydroalkylation of alkenes with racemic α-bromo amides. Angew. Chem. Int. Ed. 58, 1754–1758 (2019).

    Article  CAS  Google Scholar 

  11. Kharasch, M. S. & Mayo, F. R. The peroxide effect in the addition of reagents to unsaturated compounds. I. The addition of hydrogen bromide to allyl bromide. J. Am. Chem. Soc. 55, 2468–2496 (1933).

    Article  CAS  Google Scholar 

  12. Li, H., Shen, S., Zhu, C. & Xu, H. Direct intermolecular anti-Markovnikov hydroazidation of unactivated olefins. J. Am. Chem. Soc. 141, 9415–9421 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Miller, D. G. & Wayner, D. D. M. Improved method for the Wacker oxidation of cyclic and internal olefins. J. Org. Chem. 55, 2924–2927 (1990).

    Article  CAS  Google Scholar 

  14. Li, M. & Liu, G. A cooperative strategy for the highly selective intermolecular oxycarbonylation reaction of alkenes using a palladium catalyst. Angew. Chem. Int. Ed. 55, 13843–13848 (2016).

    Article  CAS  Google Scholar 

  15. Yang, Y., Liu, P. & Buchwald, S. L. Catalytic asymmetric hydroamination of unactivated internal olefins to aliphatic amines. Science 349, 62–69 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xi, Y., Ma, S. & Hartwig, J. F. Catalytic asymmetric addition of an amine N–H bond across internal alkenes. Nature 588, 254–260 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Werner, E. W. & Sigman, M. S. Enantioselective Heck arylations of acyclic alkenyl alcohols using a redox-relay strategy. Science 338, 1455–1458 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gurak, J. A. Jr., Yang, K. S., Liu, Z. & Engle, K. M. Directed, regiocontrolled hydroamination of unactivated alkenes via protodepalladation. J. Am. Chem. Soc. 138, 5805–5808 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, H. & Chen, G. Palladium-catalyzed amide-directed enantioselective hydrocarbo-functionalization of unactivated alkenes using a chiral monodentate oxazoline ligand. J. Am. Chem. Soc. 140, 3542–3546 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Xi, Y., Butcher, T. W., Zhang, J. & Hartwig, J. F. Regioselective, asymmetric formal hydroamination of unactivated internal alkenes. Angew. Chem. Int. Ed. 55, 776–780 (2016).

    Article  CAS  Google Scholar 

  21. Zhang, C. & Sigman, M. S. Alkenyl carbonyl derivatives in enantioselective redox relay Heck reactions: accessing α,β-unsaturated systems. J. Am. Chem. Soc. 137, 7290–7293 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xi, Y. & Hartwig, J. F. Mechanistic studies of copper-catalyzed asymmetric hydroboration of alkenes. J. Am. Chem. Soc. 139, 12758–12772 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Killen, J. C. & Willis, C. L. Convergent syntheses of 3,6-dihydroxydec-4-enolides. Org. Lett. 14, 4194–4197 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Yang, X.-H. & Zhou, Q.-L. Remote ester group leads to efficient kinetic resolution of racemic aliphatic alcohols via asymmetric hydrogenation. J. Am. Chem. Soc. 136, 17426–17429 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Pfeiffer, B. & Altmann, K.-H. Total synthesis and configurational assignment of the marine natural product haliclamide. J. Org. Chem. 78, 2553–2563 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Jung, M. & Oh, M. Total synthesis and anticancer activity of highly potent novel glycolipid derivatives. Eur. J. Med. Chem. 44, 3120–3129 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Kolb, H. C. & Sharpless, K. B. Catalytic asymmetric dihydroxylation. Chem. Rev. 94, 2483–2547 (1994).

    Article  CAS  Google Scholar 

  28. Zhang, Y. & Sigman, M. S. Palladium(II)-catalyzed enantioselective aerobic dialkoxylation of 2-propenyl phenols: a pronounced effect of copper additives on enantioselectivity. J. Am. Chem. Soc. 129, 3076–3077 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Hao, B., Gunaratna, M. J. & Hua, D. H. Chiral-substituted poly-N-vinylpyrrolidinones and bimetallic nanoclusters in catalytic asymmetric oxidation reactions. J. Am. Chem. Soc. 138, 16839–16848 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Qi, X., Chen, C. & Liu, G. Enantioselective Pd(II)-catalyzed intramolecular oxidative 6-endo aminoacetoxylation of unactivated alkenes. J. Am. Chem. Soc. 140, 7415–7419 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Tian, B., Chen, P., Leng, X. & Liu, G. Palladium-catalysed enantioselective diacetoxylation of terminal alkenes. Nat. Catal. 4, 172–179 (2021).

    Article  CAS  Google Scholar 

  32. Sehnal, P., Taylor, R. J. K. & Fairlamb, I. J. S. Emergence of palladium(IV) chemistry in synthesis and catalysis. Chem. Rev. 110, 824–889 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Yin, G., Mu, X. & Liu, G. Palladium(II)-catalyzed oxidative difunctionalization of alkenes: bond forming at a high-valent palladium center. Acc. Chem. Res. 49, 2413–2423 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Dang, Y., Qu, S., Wang, Z.-X. & Wang, X. A computational mechanistic study of an unprecedented Heck-type relay reaction: insight into the origins of regio- and enantioselectivities. J. Am. Chem. Soc. 136, 986–998 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Xu, L., Norrby, P.-O., Wu, Y.-D., Sigman, M. S. & Wiest, O. Mechanism, reactivity and selectivity in palladium-catalyzed redox-relay Heck arylations of alkenyl alcohols. J. Am. Chem. Soc. 136, 1960–1967 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. He, Y., Cai, Y. & Zhu, S. Mild and regioselective benzylic C-H functionalization: Ni-catalyzed reductive arylation of remote and proximal olefins. J. Am. Chem. Soc. 139, 1061–1064 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, W. et al. Migratory arylboration of unactivated alkenes enabled by nickel catalysis. Angew. Chem. Int. Ed. 58, 4612–4616 (2019).

    Article  CAS  Google Scholar 

  38. Barbier, P. & Benezra, C. Allergenic α-methylene-γ-butyrolactones. Stereospecific synthesis of (+)- and (−)-γ-methyl-α-methylene-γ-butyrolactones. A study of the specificity of (+) and (−) enantiomers in inducing allergic contact dermatitis. J. Med. Chem. 25, 943–946 (1982).

    Article  CAS  PubMed  Google Scholar 

  39. Shinohara, R. et al. SN2 reaction of diarylmethyl anions at secondary alkyl and cycloalkyl carbons. Eur. J. Org. Chem. 7, 1461–1478 (2019).

    Article  Google Scholar 

  40. Trost, B. M. & Crawley, M. L. A ‘chiral aldehyde’ equivalent as a building block towards biologically active targets. Chem. Eur. J. 10, 2237–2252 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. White, J. D., Somers, T. C. & Reddy, G. N. The absolute configuration of (−)-botryococcene. J. Am. Chem. Soc. 108, 5352–5353 (1986).

    Article  CAS  Google Scholar 

  42. Sarmah, B. K. & Barua, N. C. Nitro alkanes in organic synthesis: an efficient stereoselective synthesis of (+)-trans whisky lactone and (+)-eldanolide from nitro alkane synthons and using bakers’ yeast reduction as the key step. Tetrahedron 49, 2253–2260 (1993).

    Article  CAS  Google Scholar 

  43. Kayser, M. M., Chen, G. & Stewart, J. D. Enantio- and regioselective Baeyer-Villiger oxidations of 2- and 3-substituted cyclopentanones using engineered bakers’ yeast. J. Org. Chem. 63, 7103–7106 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Runmo, A.-B. L., Pamies, O., Faber, K. & Bäckvall, J.-E. Dynamic kinetic resolution of γ-hydroxy acid derivatives. Tetrahedron Lett. 43, 2983–2986 (2002).

    Article  CAS  Google Scholar 

  45. Fouque, E. & Rousseau, G. Enzymatic resolution of medium-ring lactones. Synthesis of (S)-(+)-phoracantholide I. Synthesis 9, 661–666 (1989).

    Article  Google Scholar 

  46. Xie, X. & Stahl, S. S. Efficient and selective Cu/nitroxyl-catalyzed methods for aerobic oxidative lactonization of diols. J. Am. Chem. Soc. 137, 3767–3770 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Cui, P. et al. Synthesis and biological evaluation of lisofylline (LSF) analogs as a potential treatment for Type 1 diabetes. Bioorg. Med. Chem. Lett. 16, 3401–3405 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Wilsily, A., Tramutola, F., Owston, N. A. & Fu, G. C. New directing groups for metal-catalyzed asymmetric carbon-carbon bond-forming processes: stereoconvergent alkyl-alkyl Suzuki cross-couplings of unactivated electrophiles. J. Am. Chem. Soc. 134, 5794–5797 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang, C., Zhang, Z., Liu, Y. & Liu, L. Copper-catalyzed cross-coupling reaction of organoboron compounds with primary alkyl halides and pseudohalides. Angew. Chem. Int. Ed. 50, 3904–3907 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the National Key R&D Program of China (2021YFA1500100), the National Natural Science Foundation of China (grants nos. 91956202, 22171279, 92256301 and 21821002), the Science and Technology Commission of Shanghai Municipality (grants 20JC1417000, 21520780100 and 19590750400), the International Partnership Program (121731KYSB20190016) and the Youth Innovation Promotion Association of Chinese Academy of Sciences (no. Y2022074) of the Chinese Academy of Sciences, and the Research Grants Council of Hong Kong (HKUST 16300620 and 16300021 to Z.L.). Xiaonan Li thanks Q. Yue for his assistance regarding the preparation of some alkene substrates. G.L. thanks H. Guan at the University of Cincinnati and F. Wang at Nankai University for helpful and insightful discussions. G.L. dedicates this work to the memory of Prof. Xiyan Lu.

Author information

Authors and Affiliations

Authors

Contributions

Xiaonan Li, J.L. and G.L. conceived the work and designed the experiments. Xiaonan Li performed most laboratory experiments. J.L. and Xiang Li contributed to the experiments. T.Y. and Z.L. conducted DFT calculations. Xiaonan Li, P.C., Z.L. and G.L. analysed the data and wrote the manuscript.

Corresponding authors

Correspondence to Zhenyang Lin or Guosheng Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Stereochemistry of oxypalladation.

a, The ARD reactions of Z-1au-d2 with no observation of deuterium migration. Reaction conditions: (a) K2CO3 (2 equiv.), MeOH, 25 °C; (b) Cu(CH3CN)4OTf, bpy, TEMPO, NMI, MeCN, 25 °C. b, The X-ray of 70a.

Supplementary information

Supplementary Information

Supplementary Tables 1–3, Figs. 1–21, methods, mechanism experiments, data and references.

Supplementary Data 1

Crystallographic data for compound (1R,2S,4R)-23a; CCDC reference 2201049.

Supplementary Data 2

Crystallographic data for compound 70a; CCDC reference 2127361.

Supplementary Data 3

Cartesian coordinates of DFT-optimized structures.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Yang, T., Li, J. et al. Regio- and enantioselective remote dioxygenation of internal alkenes. Nat. Chem. 15, 862–871 (2023). https://doi.org/10.1038/s41557-023-01192-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01192-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing