Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in single-molecule junctions as tools for chemical and biochemical analysis

Abstract

The development of miniaturized electronics has led to the design and construction of powerful experimental platforms capable of measuring electronic properties to the level of single molecules, along with new theoretical concepts to aid in the interpretation of the data. A new area of activity is now emerging concerned with repurposing the tools of molecular electronics for applications in chemical and biological analysis. Single-molecule junction techniques, such as the scanning tunnelling microscope break junction and related single-molecule circuit approaches have a remarkable capacity to transduce chemical information from individual molecules, sampled in real time, to electrical signals. In this Review, we discuss single-molecule junction approaches as emerging analytical tools for the chemical and biological sciences. We demonstrate how these analytical techniques are being extended to systems capable of probing chemical reaction mechanisms. We also examine how molecular junctions enable the detection of RNA, DNA, and traces of proteins in solution with limits of detection at the zeptomole level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of the temporal resolution and the detection limits of bulk analytical techniques versus those of SMJs.
Fig. 2: BJ techniques.
Fig. 3: Chemical sensing using FGJ.
Fig. 4: Chemical mechanisms, one molecule at a time using FGJ.
Fig. 5: RT and its applications.
Fig. 6: Future prospective.

Similar content being viewed by others

References

  1. Sedghi, G. et al. Long-range electron tunnelling in oligo-porphyrin molecular wires. Nat. Nanotechnol. 6, 517–523 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Gao, T., Liu, Y., Zhang, X., Bai, J. & Hong, W. Preparation and application of microelectrodes at the single-molecule scale. Chem. Asian J. 16, 253–260 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Darwish, N., Paddon-Row, M. N. & Gooding, J. J. Surface-bound norbornylogous bridges as molecular rulers for investigating interfacial electrochemistry and as single molecule switches. Acc. Chem. Res. 47, 385–395 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Moneo, A. et al. Towards molecular electronic devices based on ‘all-carbon’ wires. Nanoscale 10, 14128–14138 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Tuccitto, N. et al. Erratum: highly conductive 40-nm-long molecular wires assembled by stepwise incorporation of metal centres. Nat. Mater. 8, 359–359 (2009).

    Article  CAS  Google Scholar 

  6. Díez-Pérez, I. et al. Rectification and stability of a single molecular diode with controlled orientation. Nat. Chem. 1, 635–641 (2009).

    Article  PubMed  Google Scholar 

  7. Capozzi, B. et al. Single-molecule diodes with high rectification ratios through environmental control. Nat. Nanotechnol. 10, 522–527 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Osorio, H. M. et al. Electrochemical single-molecule transistors with optimized gate coupling. J. Am. Chem. Soc. 137, 14319–14328 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Xu, X., Yang, X., Zang, L. & Tao, N. Large gate modulation in the current of a room temperature single molecule transistor. J. Am. Chem. Soc. 127, 2386–2387 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Darwish, N. et al. Observation of electrochemically controlled quantum interference in a single anthraquinone-based norbornylogous bridge molecule. Angew. Chem. Int. Ed. 51, 3203–3206 (2012).

    Article  CAS  Google Scholar 

  11. Collier, C. P. et al. Molecular-based electronically switchable tunnel junction devices. J. Am. Chem. Soc. 123, 12632–12641 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Chen, H. & Fraser Stoddart, J. From molecular to supramolecular electronics. Nat. Rev. Mater. 6, 804–828 (2021).

    Article  CAS  Google Scholar 

  13. Green, J. E. et al. A 160-kilobit molecular electronic memory patterned at 10(11) bits per square centimetre. Nature 445, 414–417 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Bergren, A. J. et al. Musical molecules: the molecular junction as an active component in audio distortion circuits. J. Phys. Condens. Matter 28, 094011 (2016).

    Article  PubMed  Google Scholar 

  15. Aradhya, S. V. & Venkataraman, L. Single-molecule junctions beyond electronic transport. Nat. Nanotechnol. 8, 399–410 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Xiang, D., Jeong, H., Lee, T. & Mayer, D. Mechanically controllable break junctions for molecular electronics. Adv. Mater. 25, 4845–4867 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Xiang, D., Wang, X., Jia, C., Lee, T. & Guo, X. Molecular-scale electronics: from concept to function. Chem. Rev. 116, 4318–4440 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Jia, C., Ma, B., Xin, N. & Guo, X. Carbon electrode–molecule junctions: a reliable platform for molecular electronics. Acc. Chem. Res. 48, 2565–2575 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Schlecht, K. D. & Frank, C. W. Tetracycline epimerization kinetics utilizing NMR spectrometry. J. Pharm. Sci. 62, 258–261 (1973).

    Article  CAS  PubMed  Google Scholar 

  20. Blümich, B. & Singh, K. Desktop NMR and its applications from materials science to organic chemistry. Angew. Chem. Int. Ed. 57, 6996–7010 (2018).

    Article  Google Scholar 

  21. Lee, J. H., Okuno, Y. & Cavagnero, S. Sensitivity enhancement in solution NMR: emerging ideas and new frontiers. J. Magn. Reson. 241, 18–31 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lehr, M. et al. A paramagnetic NMR spectroscopy toolbox for the characterisation of paramagnetic/spin-crossover coordination complexes and metal–organic cages. Angew. Chem. Int. Ed. 59, 19344–19351 (2020).

    Article  CAS  Google Scholar 

  23. Peng, L., Clément, R. J., Lin, M. & Yang, Y. in NMR and MRI of Electrochemical Energy Storage Materials and Devices (eds Yang, Y., Fu, R. & Huo, H.) 1–70 (Royal Society of Chemistry, 2021).

  24. Swartjes, A., White, P. B., Bruekers, J. P. J., Elemans, J. A. A. W. & Nolte, R. J. M. Paramagnetic relaxation enhancement NMR as a tool to probe guest binding and exchange in metallohosts. Nat. Commun. 13, 1846 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zechel, D. L., Konermann, L., Withers, S. G. & Douglas, D. J. Pre-steady state kinetic analysis of an enzymatic reaction monitored by time-resolved electrospray ionization mass spectrometry. Biochemistry 37, 7664–7669 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Polanyi, J. C. & Zewail, A. H. Direct observation of the transition state. Acc. Chem. Res. 28, 119–132 (1995).

    Article  CAS  Google Scholar 

  27. Zewail, A. H. Femtochemistry: atomic-scale dynamics of the chemical bond. J. Phys. Chem. A 104, 5660–5694 (2000).

    Article  CAS  Google Scholar 

  28. Pakoulev, A. V. et al. Mixed frequency-/time-domain coherent multidimensional spectroscopy: research tool or potential analytical method? Acc. Chem. Res. 42, 1310–1321 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Gu, C., Jia, C. & Guo, X. Single-molecule electrical detection with real-time label-free capability and ultrasensitivity. Small Methods 1, 1700071 (2017).

    Article  Google Scholar 

  30. Li, Y., Yang, C. & Guo, X. Single-molecule electrical detection: a promising route toward the fundamental limits of chemistry and life science. Acc. Chem. Res. 53, 159–169 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Guo, S., Hihath, J. & Tao, N. Breakdown of atomic-sized metallic contacts measured on nanosecond scale. Nano Lett. 11, 927–933 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. McCammon, J. A., Gelin, B. R. & Karplus, M. Dynamics of folded proteins. Nature 267, 585–590 (1977).

    Article  CAS  PubMed  Google Scholar 

  33. Karplus, M. Molecular dynamics of biological macromolecules: a brief history and perspective. Biopolymers 68, 350–358 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Hollingsworth, S. A. & Dror, R. O. Molecular dynamics simulation for all. Neuron 99, 1129–1143 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Garner, M. H. et al. Comprehensive suppression of single-molecule conductance using destructive σ-interference. Nature 558, 415–419 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Yang, C. et al. Electric field-catalyzed single-molecule Diels–Alder reaction dynamics. Sci. Adv. 7, eabf0689 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang, C. et al. Unveiling the full reaction path of the Suzuki–Miyaura cross-coupling in a single-molecule junction. Nat. Nanotechnol. 16, 1214–1223 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Darwish, N. Chemical mechanisms, one molecule at a time. Nat. Nanotechnol. 16, 1176–1177 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Milescu, L. S., Yildiz, A., Selvin, P. R. & Sachs, F. Maximum likelihood estimation of molecular motor kinetics from staircase dwell-time sequences. Biophys. J. 91, 1156–1168 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kinz-Thompson, C. D., Bailey, N. A. & Gonzalez, R. L. Jr. Precisely and accurately inferring single-molecule rate constants. Methods Enzymol. 581, 187–225 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Su, T. A., Neupane, M., Steigerwald, M. L., Venkataraman, L. & Nuckolls, C. Chemical principles of single-molecule electronics. Nat. Rev. Mater. 1, 16002 (2016).

    Article  CAS  Google Scholar 

  42. Xin, N. et al. Concepts in the design and engineering of single-molecule electronic devices. Nat. Rev. Phys. 1, 211–230 (2019).

    Article  Google Scholar 

  43. Perrin, M. L., Burzurí, E. & van der Zant, H. S. J. Single-molecule transistors. Chem. Soc. Rev. 44, 902–919 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Wang, K. DNA-based single-molecule electronics: from concept to function. J. Funct. Biomater. 9, 8 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Muller, C. J., van Ruitenbeek, J. M. & de Jongh, L. J. Conductance and supercurrent discontinuities in atomic-scale metallic constrictions of variable width. Phys. Rev. Lett. 69, 140–143 (1992).

    Article  CAS  PubMed  Google Scholar 

  46. Reed, M. A., Zhou, C., Muller, C. J., Burgin, T. P. & Tour, J. M. Conductance of a molecular junction. Science 278, 252–254 (1997).

    Article  CAS  Google Scholar 

  47. Agraı̈t, N., Yeyati, A. L. & van Ruitenbeek, J. M. Quantum properties of atomic-sized conductors. Phys. Rep. 377, 81–279 (2003).

    Article  Google Scholar 

  48. Kim, T., Liu, Z.-F., Lee, C., Neaton Jeffrey, B. & Venkataraman, L. Charge transport and rectification in molecular junctions formed with carbon-based electrodes. Proc. Natl Acad. Sci. USA 111, 10928–10932 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, Q. et al. Graphene as a promising electrode for low-current attenuation in nonsymmetric molecular junctions. Nano Lett. 16, 6534–6540 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Zhao, S. et al. Cross-plane transport in a single-molecule two-dimensional van der Waals heterojunction. Sci. Adv. 6, eaba6714 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tian, J.-H. et al. Study of molecular junctions with a combined surface-enhanced Raman and mechanically controllable break junction method. J. Am. Chem. Soc. 128, 14748–14749 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Jeong, H., Li, H. B., Domulevicz, L. & Hihath, J. An on-chip break junction system for combined single-molecule conductance and Raman spectroscopies. Adv. Funct. Mater. 30, 2000615 (2020).

    Article  CAS  Google Scholar 

  53. Guo, C. et al. Molecular orbital gating surface-enhanced Raman scattering. ACS Nano 12, 11229–11235 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Takeuchi, Y. et al. Nuclear magnetic resonance spectra of organogermanium compounds. Part 4. Nuclear magnetic resonance spectra and molecular mechanics calculations of germacyclohexane, methylgermacyclohexanes, and dimethylgermacyclohexanes. J. Chem. Soc. Perkin Trans. 2 1988, 7–13 (1988).

    Article  Google Scholar 

  55. Jonsdottir, N. R., Kvaran, Á., Jonsdottir, S., Arnason, I. & Bjornsson, R. Conformational properties of 1-methyl-1-germacyclohexane: low-temperature NMR and quantum chemical calculations. Struct. Chem. 24, 769–774 (2013).

    Article  CAS  Google Scholar 

  56. Tang, C. et al. Identifying the conformational isomers of single-molecule cyclohexane at room temperature. Chem 6, 2770–2781 (2020).

    Article  CAS  Google Scholar 

  57. Bléger, D. & Hecht, S. Visible-light-activated molecular switches. Angew. Chem. Int. Ed. 54, 11338–11349 (2015).

    Article  Google Scholar 

  58. Yin, T.-T., Zhao, Z.-X. & Zhang, H.-X. Theoretical study of the cistrans isomerization mechanism of a pendant metal-bound azobenzene. RSC Adv. 6, 79879–79889 (2016).

    Article  CAS  Google Scholar 

  59. van Zalinge, H. et al. Variable‐temperature measurements of the single‐molecule conductance of double‐stranded DNA. Angew. Chem. Int. Ed. 118, 5625–5628 (2006).

    Article  Google Scholar 

  60. Dulić, D. et al. Direct conductance measurements of short single DNA molecules in dry conditions. Nanotechnology 20, 115502 (2009).

    Article  PubMed  Google Scholar 

  61. Xu, B. & Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Venkataraman, L., Klare, J. E., Nuckolls, C., Hybertsen, M. S. & Steigerwald, M. L. Dependence of single-molecule junction conductance on molecular conformation. Nature 442, 904–907 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Schwarzenbach, H. Circulating nucleic acids as biomarkers in breast cancer. Breast Cancer Res. 15, 211 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Schwarzenbach, H., Hoon, D. S. & Pantel, K. Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer 11, 426–437 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Gooding, J. J. & Gaus, K. Single-molecule sensors: challenges and opportunities for quantitative analysis. Angew. Chem. Int. Ed. 55, 11354–11366 (2016).

    Article  CAS  Google Scholar 

  66. Choi, S., Goryll, M., Sin, L. Y. M., Wong, P. K. & Chae, J. Microfluidic-based biosensors toward point-of-care detection of nucleic acids and proteins. Microfluid. Nanofluid. 10, 231–247 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Akkilic, N., Geschwindner, S. & Höök, F. Single-molecule biosensors: recent advances and applications. Biosens. Bioelectron. 151, 111944 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Li, Y. et al. Detection and identification of genetic material via single-molecule conductance. Nat. Nanotechnol. 13, 1167–1173 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Hu, Y. et al. Determination of Ag(I) and NADH using single-molecule conductance ratiometric probes. ACS Sens. 6, 461–469 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Taniguchi, M. et al. High-precision single-molecule identification based on single-molecule information within a noisy matrix. J. Phys. Chem. C 123, 15867–15873 (2019).

    Article  CAS  Google Scholar 

  71. Komoto, Y. et al. Time-resolved neurotransmitter detection in mouse brain tissue using an artificial intelligence-nanogap. Sci Rep. 10, 11244 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Yang, C., Qin, A., Tang, B. Z. & Guo, X. Fabrication and functions of graphene–molecule–graphene single-molecule junctions. Chem. Phys. 152, 120902 (2020).

    CAS  Google Scholar 

  73. Tian, J.-H. et al. Electrochemically assisted fabrication of metal atomic wires and molecular junctions by MCBJ and STM-BJ methods. ChemPhysChem 11, 2745–2755 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Cao, Y., Dong, S., Liu, S., Liu, Z. & Guo, X. Toward functional molecular devices based on graphene–molecule junctions. Angew. Chem. Int. Ed. 52, 3906–3910 (2013).

    Article  CAS  Google Scholar 

  75. Sun, H. et al. Efficient fabrication of stable graphene–molecule–graphene single-molecule junctions at room temperature. ChemPhysChem 19, 2258–2265 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Gao, L. et al. Graphene–DNAzyme junctions: a platform for direct metal ion detection with ultrahigh sensitivity. Chem. Sci. 6, 2469–2473 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Carmi, N., Shultz, L. A. & Breaker, R. R. In vitro selection of self-cleaving DNAs. Chem. Biol. 3, 1039–1046 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Carmi, N., Balkhi Shameelah, R. & Breaker Ronald, R. Cleaving DNA with DNA. Proc. Natl Acad. Sci. USA 95, 2233–2237 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Eberhardt, M. K., Colina, R. & Soto, K. The reaction of copper(I)–oxygen and copper(II)–ascorbic acid–oxygen with dimethyl sulfoxide. The effect of solvent. J. Org. Chem. 53, 1074–1077 (1988).

    Article  CAS  Google Scholar 

  80. Xiang, Y., Li, Z., Chen, X. & Tong, A. Highly sensitive and selective optical chemosensor for determination of Cu2+ in aqueous solution. Talanta 74, 1148–1153 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Fang, Z. et al. Lateral flow nucleic acid biosensor for Cu2+ detection in aqueous solution with high sensitivity and selectivity. Chem. Commun. 46, 9043–9045 (2010).

    Article  CAS  Google Scholar 

  82. Dujols, V., Ford, F. & Czarnik, A. W. A long-wavelength fluorescent chemodosimeter selective for Cu(II) ion in water. J. Am. Chem. Soc. 119, 7386–7387 (1997).

    Article  CAS  Google Scholar 

  83. Li, H., Huang, X. X., Kong, D. M., Shen, H. X. & Liu, Y. Ultrasensitive, high temperature and ionic strength variation-tolerant Cu2+ fluorescent sensor based on reconstructed Cu2+-dependent DNAzyme/substrate complex. Biosens. Bioelectron. 42, 225–228 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Liu, J. & Lu, Y. A DNAzyme catalytic beacon sensor for paramagnetic Cu2+ ions in aqueous solution with high sensitivity and selectivity. J. Am. Chem. Soc. 129, 9838–9839 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Liu, Z. et al. A single-molecule electrical approach for amino acid detection and chirality recognition. Sci. Adv. 7, eabe4365 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nunes, G. & Freeman, M. R. Picosecond resolution in scanning tunneling microscopy. Science 262, 1029 (1993).

    Article  CAS  PubMed  Google Scholar 

  87. Gu, C. et al. Label-free dynamic detection of single-molecule nucleophilic-substitution reactions. Nano Lett. 18, 4156–4162 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Carrow, B. P. & Hartwig, J. F. Distinguishing between pathways for transmetalation in Suzuki−Miyaura reactions. J. Am. Chem. Soc. 133, 2116–2119 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Thomas, A. A. & Denmark, S. E. Pre-transmetalation intermediates in the Suzuki–Miyaura reaction revealed: the missing link. Science 352, 329–332 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Lindsay, S. The promises and challenges of solid-state sequencing. Nat. Nanotechnol. 11, 109–111 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lindsay, S. et al. Recognition tunneling. Nanotechnology 21, 262001–262001 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Chang, S. et al. Tunnel conductance of Watson–Crick nucleoside–base pairs from telegraph noise. Nanotechnology 20, 185102 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Chang, S., He, J., Zhang, P., Gyarfas, B. & Lindsay, S. Gap distance and interactions in a molecular tunnel junction. J. Am. Chem. Soc. 133, 14267–14269 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cao, Y. et al. Building high-throughput molecular junctions using indented graphene point contacts. Angew. Chem. Int. Ed. 51, 12228–12232 (2012).

    Article  CAS  Google Scholar 

  95. Zhou, C. et al. Direct observation of single-molecule hydrogen-bond dynamics with single-bond resolution. Nat. Commun. 9, 807 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Albrecht, T. Electrochemical tunnelling sensors and their potential applications. Nat. Commun. 3, 829 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Zwolak, M. & Di Ventra, M. Electronic signature of DNA nucleotides via transverse transport. Nano Lett. 5, 421–424 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Di Ventra, M. & Taniguchi, M. Decoding DNA, RNA and peptides with quantum tunnelling. Nat. Nanotechnol. 11, 117–126 (2016).

    Article  PubMed  Google Scholar 

  99. Chang, S. et al. Electronic signatures of all four DNA nucleosides in a tunneling gap. Nano Lett. 10, 1070–1075 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Huang, S. et al. Identifying single bases in a DNA oligomer with electron tunnelling. Nat. Nanotechnol. 5, 868–873 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fu, T., Zang, Y., Zou, Q., Nuckolls, C. & Venkataraman, L. Using deep learning to identify molecular junction characteristics. Nano Lett. 20, 3320–3325 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. Im, J., Sen, S., Lindsay, S. & Zhang, P. Recognition tunneling of canonical and modified RNA nucleotides for their identification with the aid of machine learning. ACS Nano 12, 7067–7075 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Ohtsubo, K. & Marth, J. D. Glycosylation in cellular mechanisms of health and disease. Cell 126, 855–867 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Parodi, A. J. Protein glucosylation and its role in protein folding. Annu. Rev. Biochem. 69, 69–93 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Lawson, C. J. & Rees, D. A. An enzyme for the metabolic control of polysaccharide conformation and function. Nature 227, 392–393 (1970).

    Article  CAS  PubMed  Google Scholar 

  106. Mariño, K., Bones, J., Kattla, J. J. & Rudd, P. M. A systematic approach to protein glycosylation analysis: a path through the maze. Nat. Chem. Biol. 6, 713–723 (2010).

    Article  PubMed  Google Scholar 

  107. Hofmann, J., Hahm, H. S., Seeberger, P. H. & Pagel, K. Identification of carbohydrate anomers using ion mobility–mass spectrometry. Nature 526, 241–244 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Nagy, G. & Pohl, N. L. Monosaccharide identification as a first step toward de novo carbohydrate sequencing: mass spectrometry strategy for the identification and differentiation of diastereomeric and enantiomeric pentose isomers. Anal. Chem. 87, 4566–4571 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Im, J. et al. Electronic single-molecule identification of carbohydrate isomers by recognition tunnelling. Nat. Commun. 7, 13868 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Manzoni, C. et al. Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Briefings Bioinf. 19, 286–302 (2016).

    Article  Google Scholar 

  111. Boonen, K. et al. Beyond genes: re-identifiability of proteomic data and its implications for personalized medicine. Genes 10, 682 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lu, X., Nicovich, P. R., Gaus, K. & Gooding, J. J. Towards single molecule biosensors using super-resolution fluorescence microscopy. Biosens. Bioelectron. 93, 1–8 (2017).

    Article  PubMed  Google Scholar 

  113. Timp, W. & Timp, G. Beyond mass spectrometry, the next step in proteomics. Sci. Adv. 6, eaax8978 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhang, B. et al. Role of contacts in long-range protein conductance. Proc. Natl Acad. Sci. USA 116, 5886–5891 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhang, B. et al. Engineering an enzyme for direct electrical monitoring of activity. ACS Nano 14, 1360–1368 (2020).

    Article  CAS  PubMed  Google Scholar 

  116. Zhao, Y. et al. Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling. Nat. Nanotechnol. 9, 466–473 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Walkey, M. C. et al. Chemically and mechanically controlled single-molecule switches using spiropyrans. ACS Appl. Mater. Interfaces 11, 36886–36894 (2019).

    Article  CAS  PubMed  Google Scholar 

  118. Darwish, N., Foroutan-Nejad, C., Domulevicz, L., Hihath, J. & Díez-Pérez, I. in Effects of Electric Fields on Structure and Reactivity: New Horizons in Chemistry (eds Shaik, S. & Stuyver, T.) 147–194 (Royal Society of Chemistry, 2021).

  119. Ciampi, S., Darwish, N., Aitken, H. M., Díez-Pérez, I. & Coote, M. L. Harnessing electrostatic catalysis in single molecule, electrochemical and chemical systems: a rapidly growing experimental tool box. Chem. Soc. Rev. 47, 5146–5164 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Darwish, N., Aragonès, A. C., Darwish, T., Ciampi, S. & Díez-Pérez, I. Multi-responsive photo- and chemo-electrical single-molecule switches. Nano Lett. 14, 7064–7070 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Aragonès, A. C. et al. Highly conductive single-molecule wires with controlled orientation by coordination of metalloporphyrins. Nano Lett. 14, 4751–4756 (2014).

    Article  PubMed  Google Scholar 

  122. Ponce, I. et al. Building nanoscale molecular wires exploiting electrocatalytic interactions. Electrochim. Acta 179, 611–617 (2015).

    Article  CAS  Google Scholar 

  123. Beedle, A. E. M., Lezamiz, A., Stirnemann, G. & Garcia-Manyes, S. The mechanochemistry of copper reports on the directionality of unfolding in model cupredoxin proteins. Nat. Commun. 6, 7894 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. De, Bo,G. Mechanochemistry of the mechanical bond. Chem. Sci. 9, 15–21 (2018).

    Article  Google Scholar 

  125. Meir, R., Chen, H., Lai, W. & Shaik, S. Oriented electric fields accelerate Diels–Alder reactions and control the endo/exo selectivity. ChemPhysChem 11, 301–310 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Wang, Z., Danovich, D., Ramanan, R. & Shaik, S. Oriented-external electric fields create absolute enantioselectivity in Diels–Alder reactions: importance of the molecular dipole moment. J. Am. Chem. Soc. 140, 13350–13359 (2018).

    Article  CAS  PubMed  Google Scholar 

  127. Shaik, S., Mandal, D. & Ramanan, R. Oriented electric fields as future smart reagents in chemistry. Nat. Chem. 8, 1091–1098 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Shaik, S., Danovich, D., Joy, J., Wang, Z. & Stuyver, T. Electric-field mediated chemistry: uncovering and exploiting the potential of (oriented) electric fields to exert chemical catalysis and reaction control. J. Am. Chem. Soc. 142, 12551–12562 (2020).

    Article  CAS  PubMed  Google Scholar 

  129. Aragones, A. C. et al. Electrostatic catalysis of a Diels–Alder reaction. Nature 531, 88–91 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Zang, Y. et al. Directing isomerization reactions of cumulenes with electric fields. Nat. Commun. 10, 4482 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Stone, I. et al. A single-molecule blueprint for synthesis. Nat. Rev. Chem. 5, 695–710 (2021).

    Article  PubMed  Google Scholar 

  132. Makk, P. et al. Correlation analysis of atomic and single-molecule junction conductance. ACS Nano 6, 3411–3423 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Adak, O. et al. Flicker noise as a probe of electronic interaction at metal–single molecule interfaces. Nano Lett. 15, 4143–4149 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Martin, L. J., Akhavan, B. & Bilek, M. M. M. Electric fields control the orientation of peptides irreversibly immobilized on radical-functionalized surfaces. Nat. Commun. 9, 357 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Emaminejad, S. et al. Tunable control of antibody immobilization using electric field. Proc. Natl Acad. Sci. USA 112, 1995–1999 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Nadappuram, B. P. et al. Nanoscale tweezers for single-cell biopsies. Nat. Nanotechnol. 14, 80–88 (2019).

    Article  CAS  PubMed  Google Scholar 

  137. Ghomian, T. et al. High-throughput dielectrophoretic trapping and detection of DNA origami. Adv. Mater. Interfaces 8, 2001476 (2021).

    Article  CAS  Google Scholar 

  138. Tang, L. et al. Combined quantum tunnelling and dielectrophoretic trapping for molecular analysis at ultra-low analyte concentrations. Nat. Commun. 12, 913 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhan, C. et al. Single-molecule plasmonic optical trapping. Matter 3, 1350–1360 (2020).

    Article  Google Scholar 

  140. Rascón-Ramos, H., Artés, J. M., Li, Y. & Hihath, J. Binding configurations and intramolecular strain in single-molecule devices. Nat. Mater. 14, 517–522 (2015).

    Article  PubMed  Google Scholar 

  141. Pla-Vilanova, P. et al. The spontaneous formation of single-molecule junctions via terminal alkynes. Nanotechnology 26, 381001 (2015).

    Article  PubMed  Google Scholar 

  142. Darwish, N. et al. Reversible potential-induced structural changes of alkanethiol monolayers on gold surfaces. Electrochem. Commun. 13, 387–390 (2011).

    Article  CAS  Google Scholar 

  143. Peiris, C. R. et al. Spontaneous S–Si bonding of alkanethiols to Si(111)–H: towards Si–molecule–Si circuits. Chem. Sci. 11, 5246–5256 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Dief, E. M. & Darwish, N. Ultrasonic generation of thiyl radicals: a general method of rapidly connecting molecules to a range of electrodes for electrochemical and molecular electronics applications. ACS Sens. 6, 573–580 (2021).

    Article  CAS  PubMed  Google Scholar 

  145. Dief, E. M., Brun, A. P. L., Ciampi, S. & Darwish, N. Spontaneous grafting of OH-terminated molecules on Si−H surfaces via Si–O–C covalent bonding. Surfaces 4, 81–88 (2021).

    Article  CAS  Google Scholar 

  146. Dief, E. M. et al. Covalent linkages of molecules and proteins to Si–H surfaces formed by disulfide reduction. Langmuir 36, 14999–15009 (2020).

    Article  CAS  PubMed  Google Scholar 

  147. Dief, E. M. & Darwish, N. Electrochemically fabricated molecule–electrode contacts for molecular electronics. Curr. Opin. Electrochem. 34, 101019 (2022).

    Article  CAS  Google Scholar 

  148. Dief, E. M. et al. Covalent linkages of molecules and proteins to Si−H surfaces formed by disulfide reduction. Langmuir 36, 14999–15009 (2020).

    Article  CAS  PubMed  Google Scholar 

  149. Peiris, C. R. et al. Metal–single-molecule–semiconductor junctions formed by a radical reaction bridging gold and silicon electrodes. J. Am. Chem. Soc. 141, 14788–14797 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Shaik, S., Ramanan, R., Danovich, D. & Mandal, D. Structure and reactivity/selectivity control by oriented-external electric fields. Chem. Soc. Rev. 47, 5125–5145 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

N.D. acknowledges support from the Western Australian Future Health Research and Innovation Fund and the Australian Research Council Discovery Project DP190100735. P.J.L. acknowledges support from the Australian Research Council through Discovery Project DP220100790.

Author information

Authors and Affiliations

Authors

Contributions

N.D. conceived the topic and the structure of the Review. N.D. and E.M.D. conducted the literature research and wrote the initial manuscript with notable contributions from P.J.L. and I.D.-P. All the authors contributed to the discussion, editing and revision of the manuscript.

Corresponding author

Correspondence to Nadim Darwish.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Wenjing Hong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dief, E.M., Low, P.J., Díez-Pérez, I. et al. Advances in single-molecule junctions as tools for chemical and biochemical analysis. Nat. Chem. 15, 600–614 (2023). https://doi.org/10.1038/s41557-023-01178-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01178-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing