Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structural resolution of a small organic molecule by serial X-ray free-electron laser and electron crystallography

Abstract

Structure analysis of small crystals is important in areas ranging from synthetic organic chemistry to pharmaceutical and material sciences, as many compounds do not yield large crystals. Here we present the detailed characterization of the structure of an organic molecule, rhodamine-6G, determined at a resolution of 0.82 Å by an X-ray free-electron laser (XFEL). Direct comparison of this structure with that obtained by electron crystallography from the same sample batch of microcrystals shows that both methods can accurately distinguish the position of some of the hydrogen atoms, depending on the type of chemical bond in which they are involved. Variations in the distances measured by XFEL and electron diffraction reflect the expected differences in X-ray and electron scatterings. The reliability for atomic coordinates was found to be better with XFEL, but the electron beam showed a higher sensitivity to charges.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SX of rhodamine-6G crystals.
Fig. 2: Structures of rhodamine-6G determined by SX and ED.
Fig. 3: 2D slices of electron density and Coulomb potential maps at the plane of the xanthene ring.
Fig. 4: Peak positions of hydrogen densities.

Data availability

Crystallographic data have been deposited at the Cambridge Crystallographic Data Centre, under deposition nos. CCDC 2119567 (SX), 2180418 (rt-ED), 2180417 (cryo-ED) and 2180416 (triclinic-cryo-ED). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. SX image data have been deposited at the Coherent X-ray Imaging Database (CXIDB), under deposition no. 206 (https://www.cxidb.org/id-206.html). ED image data have been deposited at Zenodo (https://doi.org/10.5281/zenodo.6684913)51. Please also refer to the supporting README document for using the raw image data. Source data are provided with this paper.

References

  1. Henderson, R. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q. Rev. Biophys. 28, 171–193 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, D., Oleynikov, P., Hovmöller, S. & Zou, X. Collecting 3D electron diffraction data by the rotation method. Z. Krist. 225, 94–102 (2010).

    Article  CAS  Google Scholar 

  3. Nannenga, B. L., Shi, D., Leslie, A. G. W. & Gonen, T. High-resolution structure determination by continuous-rotation data collection in MicroED. Nat. Methods 11, 927–930 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yonekura, K., Kato, K., Ogasawara, M., Tomita, M. & Toyoshima, C. Electron crystallography of ultrathin 3D protein crystals: atomic model with charges. Proc. Natl Acad. Sci. USA 112, 3368–3373 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Andrusenko, I. et al. The crystal structure of orthocetamol solved by 3D electron diffraction. Angew. Chem. Int. Ed. 131, 11035–11038 (2019).

    Article  Google Scholar 

  6. Inoue, S. et al. Emerging disordered layered-herringbone phase in organic semiconductors unveiled by electron crystallography. Chem. Mater. 34, 72–83 (2022).

    Article  CAS  Google Scholar 

  7. Palatinus, L. et al. Hydrogen positions in single nanocrystals revealed by electron diffraction. Science 355, 166–169 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Clabbers, M. T. B., Gruene, T., van Genderen, E. & Abrahams, J. P. Reducing dynamical electron scattering reveals hydrogen atoms. Acta Crystallogr. A Found. Adv. 75, 82–93 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752–757 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Barty, A. et al. Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements. Nat. Photon. 6, 35–40 (2012).

    Article  CAS  Google Scholar 

  11. Chapman, H. N. et al. Femtosecond X-ray protein nanocrystallography. Nature 470, 73–78 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Boutet, S. et al. High-resolution protein structure determination by serial femtosecond crystallography. Science 337, 362–364 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Masuda, T. et al. Atomic resolution structure of serine protease proteinase K at ambient temperature. Sci. Rep. 7, 45604 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kwon, H. et al. XFEL crystal structures of peroxidase compound II. Angew. Chem. Int. Ed. 60, 14578–14585 (2021).

    Article  CAS  Google Scholar 

  15. Brewster, A. S. et al. Indexing amyloid peptide diffraction from serial femtosecond crystallography: new algorithms for sparse patterns. Acta Crystallogr. D Biol. Crystallogr. 71, 357–366 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dejoie, C. et al. Serial snapshot crystallography for materials science with SwissFEL. IUCrJ 2, 361–370 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schriber, E. A. et al. Chemical crystallography by serial femtosecond X-ray diffraction. Nature 601, 360–365 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Madsen, A. Ø. in Structure and Bonding (ed. Stalke, D.) 21–52 (Springer, 2012).

  19. Meilleur, F., Kovalevsky, A. & Myles, D. A. A. IMAGINE: the neutron protein crystallography beamline at the high flux isotope reactor. Methods Enzymol. 634, 69–85 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Nakane, T. et al. Single-particle cryo-EM at atomic resolution. Nature 587, 152–156 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yip, K. M., Fischer, N., Paknia, E., Chari, A. & Stark, H. Atomic-resolution protein structure determination by cryo-EM. Nature 587, 157–161 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Takaba, K., Maki-Yonekura, S., Inoue, S., Hasegawa, T. & Yonekura, K. Protein and organic-molecular crystallography with 300 kV electrons on a direct electron detector. Front. Mol. Biosci. 7, 612226 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Adhikesavalu, D. N., Mastropaolo, D., Camerman, A. & Camerman, N. Two rhodamine derivatives: 9-[2-(ethoxycarbonyl)phenyl]-3,6-bis(ethylamino)-2,7-dimethylxanthylium chloride monohydrate and 3,6-diamino-9-[2-(methoxycarbonyl)phenyl]xanthylium chloride trihydrate. Acta Crystallogr. C 57, 657–659 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Woińska, M., Grabowsky, S., Dominiak, P. M., Woźniak, K. & Jayatilaka, D. Hydrogen atoms can be located accurately and precisely by X-ray crystallography. Sci. Adv. 2, e1600192 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Allen, F. H. & Bruno, I. J. Bond lengths in organic and metal-organic compounds revisited: X–H bond lengths from neutron diffraction data. Acta Crystallogr. B Struct. Sci. 66, 380–386 (2010).

    Article  CAS  Google Scholar 

  26. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 71, 3–8 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yonekura, K. & Maki-Yonekura, S. Refinement of cryo-EM structures using scattering factors of charged atoms. J. Appl. Crystallogr. 49, 1517–1523 (2016).

    Article  CAS  Google Scholar 

  28. Yonekura, K. et al. Ionic scattering factors of atoms that compose biological molecules. IUCrJ 5, 348–353 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Afonine, P. V. et al. Joint X-ray and neutron refinement with phenix.refine. Acta Crystallogr. D Biol. Crystallogr. 66, 1153–1163 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ishikawa, T. et al. A compact X-ray free-electron laser emitting in the sub-ångström region. Nat. Photon. 6, 540–544 (2012).

    Article  CAS  Google Scholar 

  31. Yabashi, M., Tanaka, H. & Ishikawa, T. Overview of the SACLA facility. J. Synchrotron Radiat. 22, 477–484 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Clabbers, M. T. B., Gruene, T., Parkhurst, J. M., Abrahams, J. P. & Waterman, D. G. Electron diffraction data processing with DIALS. Acta Crystallogr. D Struct. Biol. 74, 506–518 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. White, T. A. et al. Recent developments in CrystFEL. J. Appl. Cryst. 49, 680–689 (2016).

    Article  CAS  Google Scholar 

  34. Gevorkov, Y. et al. XGANDALF—extended gradient descent algorithm for lattice finding. Acta Crystallogr. A Found. Adv. 75, 694–704 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Duisenberg, A. J. M. Indexing in single-crystal diffractometry with an obstinate list of reflections. J. Appl. Crystallogr. 25, 92–96 (1992).

    Article  CAS  Google Scholar 

  36. Leslie, A. G. W. & Powell, H. R. in Evolving Methods for Macromolecular Crystallography (eds Read, R. J. & Sussman, J. L.) 41–51 (Springer, 2007).

  37. Sheldrick, G. M. SHELXT— integrated space-group and crystal-structure determination. Acta Crystallogr. A Found. Crystallogr. 71, 3–8 (2015).

    Article  Google Scholar 

  38. Bradski, G. The OpenCV library. Dr Dobbs J. Softw. Tools 120, 122–125 (2000).

    Google Scholar 

  39. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article  PubMed  Google Scholar 

  40. Yonekura, K., Ishikawa, T. & Maki-Yonekura, S. A new cryo-EM system for electron 3D crystallography by eEFD. J. Struct. Biol. 206, 243–253 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Hamaguchi, T. et al. A new cryo-EM system for single particle analysis. J. Struct. Biol. 207, 40–48 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Takaba, K., Maki-Yonekura, S. & Yonekura, K. Collecting large datasets of rotational electron diffraction with ParallEM and SerialEM. J. Struct. Biol. 211, 107549 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Yamashita, K., Hirata, K. & Yamamoto, M. KAMO: towards automated data processing for microcrystals. Acta Crystallogr. D Struct. Biol. 74, 441–449 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Evans, P. R. An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Crystallogr. D Biol. Crystallogr. 67, 282–292 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kabsch, W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. D Biol. Crystallogr. 66, 133–144 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Foadi, J. et al. Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 69, 1617–1632 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sheldrick, G. M. Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr. D Biol. Crystallogr. 66, 479–485 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kato, K. et al. Double-helix supramolecular nanofibers assembled from negatively curved nanographenes. J. Am. Chem. Soc. 143, 5465–5469 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Mott, N. F. The scattering of electrons by atoms. Proc. R. Soc. Lond. A 127, 658–665 (1930).

    Article  CAS  Google Scholar 

  50. Bethe, H. Zur Theorie des durchgangs schneller Korpuskularstrahlen durch Materie. Ann. Phys. 397, 325–400 (1930).

    Article  Google Scholar 

  51. Takaba, K. et al. Electron diffraction image files of rhodamine-6g microcrystals with CRYO ARM 300. Zenodo (2022); https://doi.org/10.5281/zenodo.6684913

Download references

Acknowledgements

We thank K. Hata for designing a special sample–pin mounter, Y. Kageyama for support with sample preparation, K. Hirata for advice on SX data analysis at the beginning of this study, and D. B. McIntosh for help in improving the manuscript. This work was partly supported by JSPS KAKENHI (grant no. 20K15764 to K. Takaba), the JST-Mirai Program (grant no. JPMJMI20G5 to K.Y.), JST CREST (grant no. JPMJCR18J2 to K.Y., S.M.-Y., K. Takaba) and the Cyclic Innovation for Clinical Empowerment (CiCLE) from the Japan Agency for Medical Research and Development, AMED (K.Y.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

K. Takaba, S.M.-Y., I.I., K. Tono, T.I., M.Y. and K.Y. conceived the project. K. Takaba and S.M.-Y. prepared target specimens for SX and ED experiments. I.I., K. Tono and M.Y. set up the XFEL beamline for measurements. K.Y. set up the cryo-electron microscope for measurements. K. Takaba, S.M.-Y. and K.Y. collected SX data, and K. Takaba and S.M.-Y. collected ED data. T.H., K.K. and H.N. supported SX data collection. K. Takaba processed the raw data, solved structures and analysed them. K. Takaba, S.M.-Y., I.I., K. Tono and K.Y. discussed the results. K. Takaba and K.Y. wrote the manuscript. All authors joined in discussions of the manuscript.

Corresponding author

Correspondence to Koji Yonekura.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Tim Gruene, Daniel Paley and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Atomic models of rhodamine-6g obtained in this study.

(a–c) The SX model determined from the orthorhombic crystal placed in the unit cell (a), the rt-ED (b) and the cryo-ED (c) models from the orthorhombic crystal. (d) The atomic model in (a) with labels of non-hydrogen atoms. (e) Overlay of the models in (a) and (b) along with the unit cells. (f) The triclinic cryo-ED model from the recrystallized crystal. (g) The model in (f) with labels of non-hydrogen atoms. (h) Rhodamine-6g dimers in the orthorhombic (orange) and triclinic crystals (cyan). The rt-ED (b) and triclinic-cryo-ED (f) models are overlaid by adjusting the monomers at the top onto each other.

Extended Data Fig. 2 Similarities among the atomic models of the SX and ED structures.

(a–c) Relation plots between the SX and ED structures in 1,2- (a) and 1,3- (b) bond distances for the same pair of non-hydrogen atoms and in B-factors (c) for the same non-hydrogen atoms. A linear regression is drawn for the rt-ED in (c). See also Supplementary Table 1 for bond lengths between non-hydrogen atoms. Correlation coefficients between the SX and ED data are also shown in the graphs.

Source data

Extended Data Fig. 3 Bond deviations in the atomic models of the SX, ED structures from the reported SCXRD structure.

A histogram of deviations in bond distances between the SCXRD and SX or ED structures, |dSX or ED - dSCXRD|. Bond distances, d, are measured for 1,3- pairs. The root mean square (rms) values of the deviation are represented in the inset of the graphs.

Source data

Extended Data Fig. 4 Peak positions of hydrogen densities in methyl and methylene groups.

(a) The same density plots as in Fig. 4b, c but in C-H3 (methyl) bonds from the SX and rt-ED structures in green and yellow, respectively. (b) The same plots as in (a) but in C-H2 (methylene) bonds. Gray horizontal lines refer to a density level of 1.5σ, and vertical lines represent the positions of the hydrogen nuclei, obtained by ND studies25.

Source data

Extended Data Fig. 5 Diagrams of R value variations for refinement of the rt-ED structure with the charged-atom model.

(a–i) Charge values were varied for specific atoms shown in the horizontal and vertical axes, and R values are represented in gradient colors according to the gradient bar on the right in each diagram. R values for the data with Fo > 4σ in the whole resolution shells (a, d, g), in the lowest resolution shell of s < 0.2 Å−1 (b, e, h) and in the other remaining shells (s ≥ 0.2 Å−1) (c, f, i). Amide-hydrogen atoms (H15 and H16) were exclusively charged with given values along the axes in (a – c). Given a charge of -0.9 to a chloride atom (CL1), H15 and H16 were positively charged in (d – f). Given +0.2 to H16, H15 was positively and CL1 was negatively charged in (g – i). The lowest R value is shown with yellow markers in a, b, d, e, g and h. All possible combinations of charges for H15, H16 and CL1 were examined as in Methods.

Extended Data Fig. 6 Diagrams of R value variations for refinement of the SX structure with the charged-atom model.

(ai) Done in the same way as in Extended Data Fig. 5, but for the SX data and model. No grid points giving R value minima are depicted and variations in R values are smaller than those for the ED data (c.f. Extended Data Fig. 5).

Extended Data Fig. 7 Configuration of the xanthene ring and the ethoxycabonyl tail in the SX structure of rhodamine-6g.

(a) The plane including the xanthene ring shown in pale pink is labeled ‘α’. The plane ‘β’ in magenta is defined as a cross-section cutting through the center of the xanthene ring along O13 – C6 and perpendicular to the plane α. (b) A side view of (a). The ether oxygen (O31) in the ethoxycarbonyl tail faces to the xanthene-ring side and is close to the central plane β: only 0.163 Å and 0.038 Å apart from the plane in the SX- and cryo-ED structures, respectively. The distances of which are also listed in Supplementary Table 1.

Extended Data Fig. 8 Relation plots between the neutral and charged models for the rt-ED structure.

(a, b) Relation plots between the neutral and charged rt-ED structures in 1,2- bond distances (a) and in B-factors (b) for the same non-hydrogen atoms. Correlation coefficients are shown in the legend.

Source data

Supplementary information

Supplementary Information

Supplementary Discussion, Tables 1–6, Figs. 1 and 2, References and ORTEP drawing of crystal structures.

Supplementary Data 1

Crystallographic data of SX.

Supplementary Data 2

Crystallographic data of rtED.

Supplementary Data 3

Structure factors for rtED.

Supplementary Data 4

Crystallographic data of cryoED.

Supplementary Data 5

Structure factors for cryoED.

Supplementary Data 6

Crystallographic data of triclinic-cryoED.

Supplementary Data 7

Structure factors for triclinic-cryoED.

Supplementary Data 8

README document source for data processing.

Supplementary Data 9

Source Data for Supplementary Fig. 1c.

Supplementary Table 1

A workbook of Supplementary Tables 1–6.

Source data

Source Data Fig. 1

Geometrical statistics of measured diffraction data.

Source Data Fig. 2

Geometrical statistics of molecular structure data.

Source Data Fig. 4

Geometrical features of molecular density data.

Source Data Extended Data Fig./Table 2

Geometrical statistics of molecular structure data.

Source Data Extended Data Fig./Table 3

Geometrical statistics of molecular structure data.

Source Data Extended Data Fig./Table 4

Geometrical features of molecular density data.

Source Data Extended Data Fig./Table 8

Geometrical statistics of molecular structure data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takaba, K., Maki-Yonekura, S., Inoue, I. et al. Structural resolution of a small organic molecule by serial X-ray free-electron laser and electron crystallography. Nat. Chem. 15, 491–497 (2023). https://doi.org/10.1038/s41557-023-01162-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01162-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing