Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metal-free reduction of CO2 to formate using a photochemical organohydride-catalyst recycling strategy

Abstract

Increasing levels of CO2 in the atmosphere is a problem that must be urgently resolved if the rise in current global temperatures is to be slowed. Chemically reducing CO2 into compounds that are useful as energy sources and carbon-based materials could be helpful in this regard. However, for the CO2 reduction reaction (CO2RR) to be operational on a global scale, the catalyst system must: use only renewable energy, be built from abundantly available elements and not require high-energy reactants. Although light is an attractive renewable energy source, most existing CO2RR methods use electricity and many of the catalysts used are based on rare heavy metals. Here we present a transition-metal-free catalyst system that uses an organohydride catalyst based on benzimidazoline for the CO2RR that can be regenerated using a carbazole photosensitizer and visible light. The system is capable of producing formate with a turnover number exceeding 8,000 and generates no other reduced products (such as H2 and CO).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Reduction of CO2 using different strategies.
Fig. 2: Reduction of BI+ to BIH via visible light-driven photoreaction.
Fig. 3: Photocatalytic CO2 reduction reaction.
Fig. 4: Mechanistic studies of the generation of carbazole radical cation.
Fig. 5: Pathway for the conversion of BI to BIH.
Fig. 6: The proposed reaction mechanism for the overall photocatalytic CO2RR.

Similar content being viewed by others

Data availability

The additional discussions and the data supporting the plots within this Article and other findings of this study, such as 1H NMR and 13C NMR spectra, cyclic voltammograms, optical spectra, experimental procedures, and quantum chemical calculations, are available in the Supplementary Information. Source data are provided with this Article.

References

  1. White, J. L. et al. Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chem. Rev. 115, 12888–12935 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. MacDowell, N. et al. An overview of CO2 capture technologies. Energy Environ. Sci. 3, 1645–1669 (2010).

    Article  CAS  Google Scholar 

  3. Aresta, M., Dibenedetto, A. & Angelini, A. Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem. Rev. 114, 1709–1742 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Ra, E. C. et al. Recycling carbon dioxide through catalytic hydrogenation: recent key developments and perspectives. ACS Catal. 10, 11318–11345 (2020).

    Article  CAS  Google Scholar 

  5. Qiao, J., Liu, Y., Hong, F. & Zhang, J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 43, 631–675 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Takeda, H., Cometto, C., Ishitani, O. & Robert, M. Electrons, photons, protons and earth-abundant metal complexes for molecular catalysis of CO2 reduction. ACS Catal. 7, 70–88 (2017).

    Article  CAS  Google Scholar 

  7. Seyferth, D. The Grignard reagents. Organometallics 28, 1598–1605 (2009).

    Article  CAS  Google Scholar 

  8. Seo, H., Liu, A. & Jamison, T. F. Direct β-selective hydrocarboxylation of styrenes with CO2 enabled by continuous flow photoredox catalysis. J. Am. Chem. Soc. 139, 13969–13972 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Seo, H., Katcher, M. H. & Jamison, T. F. Photoredox activation of carbon dioxide for amino acid synthesis in continuous flow. Nat. Chem. 9, 453–456 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Matsuoka, S., Kohzuki, T., Pac, C. & Yanagida, S. Photochemical reduction of carbon dioxide to formate catalyzed by p-terphenyl in aprotic polar solvent. Chem. Lett. 19, 2047–2048 (1990).

    Article  Google Scholar 

  11. Sun, Z. et al. Catalysis of carbon dioxide photoreduction on nanosheets: fundamentals and challenges. Angew. Chem. Int. Ed. 57, 7610–7627 (2018).

    Article  CAS  Google Scholar 

  12. Matsuoka, S., Yamamoto, K., Pac, C. & Yanagida, S. Enhanced p-terphenyl-catalyzed photoreduction of CO2 to CO through the mediation of Co(III)–cyclam complex. Chem. Lett. 20, 2099–2100 (1991).

    Article  Google Scholar 

  13. Zhang, X., Cibian, M., Call, A., Yamauchi, K. & Sakai, K. Photochemical CO2 reduction driven by water-soluble copper(I) photosensitizer with the catalysis accelerated by multi-electron chargeable cobalt porphyrin. ACS Catal. 9, 11263–11273 (2019).

    Article  CAS  Google Scholar 

  14. Tamaki, Y., Morimoto, T., Koike, K. & Ishitani, O. Photocatalytic CO2 reduction with high turnover frequency and selectivity of formic acid formation using Ru(II) multinuclear complexes. Proc. Natl Acad. Sci. USA 109, 15673–15678 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee, S. E. et al. Visible-light photocatalytic conversion of carbon dioxide by Ni(II) complexes with N4S2 coordination: Highly efficient and selective production of formate. J. Am. Chem. Soc. 142, 19142–19149 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Liu, X., Inagaki, S. & Gong, J. Heterogeneous molecular systems for photocatalytic CO2 reduction with water oxidation. Angew. Chem. Int. Ed. 55, 14924–14950 (2016).

    Article  CAS  Google Scholar 

  17. Su, B., Cao, Z.-C. & Shi, Z.-J. Exploration of earth-abundant transition metals (Fe, Co, and Ni) as catalysts in unreactive chemical bond activations. Acc. Chem. Res. 48, 886–896 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, D. & Astruc, D. The recent development of efficient earth-abundant transition-metal nanocatalysts. Chem. Soc. Rev. 46, 816–854 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Schneider, J., Jia, H., Muckerman, J. T. & Fujita, E. Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reduction catalysts. Chem. Soc. Rev. 41, 2036–2051 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Behnke, S. L., Manesis, A. C. & Shafaat, H. S. Spectroelectrochemical investigations of nickel cyclam indicate different reaction mechanisms for electrocatalytic CO2 and H+ reduction. Dalton Trans. 47, 15206–15216 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Elgrishi, N., Chambers, M. B. & Fontecave, M. Turning it off! Disfavouring hydrogen evolution to enhance selectivity for CO production during homogeneous CO2 reduction by cobalt–terpyridine complexes. Chem. Sci. 6, 2522–2531 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ooka, H., Figueiredo, M. C. & Koper, M. T. M. Competition between hydrogen evolution and carbon dioxide reduction on copper electrodes in mildly acidic media. Langmuir 33, 9307–9313 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. An, P. et al. Enhancing CO2 reduction by suppressing hydrogen evolution with polytetrafluoroethylene protected copper nanoneedles. J. Mater. Chem. A 8, 15936–15941 (2020).

    Article  CAS  Google Scholar 

  24. Tsujiguchi, T. et al. Acceleration of electrochemical CO2 reduction to formate at the Sn/reduced graphene oxide interface. ACS Catal. 11, 3310–3318 (2021).

    Article  CAS  Google Scholar 

  25. Hietala, J. et al. in Ullmann’s Encyclopedia of Industrial Chemistry 7th edn (eds Bellussi, G. et al.) (Wiley, 2016); https://doi.org/10.1002/14356007.a12_013.pub3

  26. Yang, J. Y., Kerr, T. A., Wang, X. S. & Barlow, J. M. Reducing CO2 to HCO2 at mild potentials: Lessons from formate dehydrogenase. J. Am. Chem. Soc. 142, 19438–19445 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Lorenzo, B. F. & O’Kiely, P. Alternatives to formic acid as a grass silage additive under two contrasting ensilability conditions. Irish J. Agr. Food Res. 47, 135–149 (2008).

    Google Scholar 

  28. Bahuguna, A. & Sasson, Y. Formate-bicarbonate cycle as a vehicle for hydrogen and energy storage. ChemSusChem 14, 1258–1283 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Enthaler, S. Carbon dioxide—the hydrogen-storage material of the future? ChemSusChem 1, 801–804 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Joó, F. Breakthroughs in hydrogen storage—formic acid as a sustainable storage material for hydrogen. ChemSusChem 1, 805–808 (2008).

    Article  PubMed  Google Scholar 

  31. Boston, D. J., Xu, C., Armstrong, D. W. & MacDonnell, F. M. Photochemical reduction of carbon dioxide to methanol and formate in a homogeneous system with pyridinium catalysts. J. Am. Chem. Soc. 135, 16252–16255 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Tamaki, Y., Koike, K. & Ishitani, O. Highly efficient, selective, and durable photocatalytic system for CO2 reduction to formic acid. Chem. Sci. 6, 7213–7221 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. P, S. & Mandal, S. K. From CO2 activation to catalytic reduction: A metal-free approach. Chem. Sci. 11, 10571–10593 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Oh, Y. & Hu, X. Organic molecules as mediators and catalysts for photocatalytic and electrocatalytic CO2 reduction. Chem. Soc. Rev. 42, 2253–2261 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Lim, C.-H., Holder, A. M., Hynes, J. T. & Musgrave, C. B. Catalytic reduction of CO2 by renewable organohydrides. J. Phys. Chem. Lett. 6, 5078–5092 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Keith, J. A. & Carter, E. A. Theoretical insights into electrochemical CO2 reduction mechanisms catalyzed by surface-bound nitrogen heterocycles. J. Phys. Chem. Lett. 4, 4058–4063 (2013).

    Article  CAS  Google Scholar 

  37. Alherz, A. et al. Renewable hydride donors for the catalytic reduction of CO2: a thermodynamic and kinetic study. J. Phys. Chem. B 122, 10179–10189 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Wen, F. et al. Amide-bridged conjugated organic polymers: efficient metal-free catalysts for visible-light-driven CO2 reduction with H2O to CO. Chem. Sci. 12, 11548–11553 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, Y., Godin, R., Durrant, J. R. & Tang, J. Efficient hole trapping in carbon dot/oxygen-modified carbon nitride heterojunction photocatalysts for enhanced methanol production from CO2 under neutral conditions. Angew. Chem. Int. Ed. 60, 20811–20816 (2021).

    Article  CAS  Google Scholar 

  40. Mazzanti, S. et al. All-organic Z-scheme photoreduction of CO2 with water as the donor of electrons and protons. Appl. Catal. B 285, 119773 (2021).

    Article  CAS  Google Scholar 

  41. Courtemanche, M.-A., Légaré, M.-A., Maron, L. & Fontaine, F.-G. A highly active phosphine–borane organocatalyst for the reduction of CO2 to methanol using hydroboranes. J. Am. Chem. Soc. 135, 9326–9329 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Lim, C.-H. et al. Benzimidazoles as metal-free and recyclable hydrides for CO2 reduction to formate. J. Am. Chem. Soc. 141, 272–280 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Rueping, M., Dufour, J. & Schoepke, F. R. Advances in catalytic metal-free reductions: From bio-inspired concepts to applications in the organocatalytic synthesis of pharmaceuticals and natural products. Green Chem. 13, 1084–1105 (2011).

    Article  CAS  Google Scholar 

  44. Lu, L.-Q., Li, Y., Junge, K. & Beller, M. Iron-catalyzed hydrogenation for the in situ regeneration of an NAD(P)H model: Biomimetic reduction of α-keto-/α-iminoesters. Angew. Chem. Int. Ed. 52, 8382–8386 (2013).

    Article  CAS  Google Scholar 

  45. Chen, Q.-A. et al. Dihydrophenanthridine: a new and easily regenerable NAD(P)H model for biomimetic asymmetric hydrogenation. J. Am. Chem. Soc. 134, 2442–2448 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Chen, Q.-A. et al. Biomimetic asymmetric hydrogenation: in situ regenerable Hantzsch esters for asymmetric hydrogenation of benzoxazinones. J. Am. Chem. Soc. 133, 16432–16435 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Paul, C. E., Arends, I. W. C. E. & Hollmann, F. Is simpler better? Synthetic nicotinamide cofactor analogues for redox chemistry. ACS Catal. 4, 788–797 (2014).

    Article  CAS  Google Scholar 

  48. Wu, H. et al. Methods for the regeneration of nicotinamide coenzymes. Green Chem. 15, 1773–1789 (2013).

    Article  CAS  Google Scholar 

  49. Ohtsu, H. & Tanaka, K. An organic hydride transfer reaction of a ruthenium NAD model complex leading to carbon dioxide reduction. Angew. Chem. Int. Ed. 51, 9792–9795 (2012).

    Article  CAS  Google Scholar 

  50. Emmanuel, M. A., Greenberg, N. R., Oblinsky, D. G. & Hyster, T. K. Accessing non-natural reactivity by irradiating nicotinamide-dependent enzymes with light. Nature 540, 414–417 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Wang, J., Zhu, Z.-H., Chen, M.-W., Chen, Q.-A. & Zhou, Y.-G. Catalytic biomimetic asymmetric reduction of alkenes and imines enabled by chiral and regenerable NAD(P)H models. Angew. Chem. Int. Ed. 58, 1813–1817 (2019).

    Article  CAS  Google Scholar 

  52. Ohtsu, H. & Tanaka, K. Drastic difference in the photo-driven hydrogenation reactions of ruthenium complexes containing NAD model ligands. Chem. Commun. 48, 1796–1798 (2012).

    Article  CAS  Google Scholar 

  53. Ma, B. et al. Efficient visible-light-driven CO2 reduction by a cobalt molecular catalyst covalently linked to mesoporous carbon nitride. J. Am. Chem. Soc. 142, 6188–6195 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Shon, J.-H. et al. Photoredox catalysis on unactivated substrates with strongly reducing iridium photosensitizers. Chem. Sci. 12, 4069–4078 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hong, D., Tsukakoshi, Y., Kotani, H., Ishizuka, T. & Kojima, T. Visible-light-driven photocatalytic CO2 reduction by a Ni(II) complex bearing a bioinspired tetradentate ligand for selective CO production. J. Am. Chem. Soc. 139, 6538–6541 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Kamada, K. et al. Photocatalytic CO2 reduction using a robust multifunctional iridium complex toward the selective formation of formic acid. J. Am. Chem. Soc. 142, 10261–10266 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Hasegawa, E. et al. Photoinduced electron transfer reactions of α,β-epoxy ketones with 2-phenyl-N,N-dimethylbenzimidazoline (PDBMI): significant water effect on the reaction pathway. Tetrahedron Lett. 37, 7079–7082 (1996).

    Article  CAS  Google Scholar 

  58. Ilic, S., Alherz, A., Musgrave, C. B. & Glusac, K. D. Importance of proton-coupled electron transfer in cathodic regeneration of organic hydrides. Chem. Commun. 55, 5583–5586 (2019).

    Article  CAS  Google Scholar 

  59. Hasegawa, E. et al. Photoinduced electron-transfer systems consisting of electron-donating pyrenes or anthracenes and benzimidazolines for reductive transformation of carbonyl compounds. Tetrahedron 62, 6581–6588 (2006).

    Article  CAS  Google Scholar 

  60. Matsubara, R. et al. UVA- and visible-light-mediated generation of carbon radicals from organochlorides using nonmetal photocatalyst. J. Org. Chem. 83, 9381–9390 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Yabuta, T., Hayashi, M. & Matsubara, R. Photocatalytic reductive C–O bond cleavage of alkyl aryl ethers by using carbazole catalysts with cesium carbonate. J. Org. Chem. 86, 2545–2555 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Pokharel, U. R., Fronczek, F. R. & Maverick, A. W. Retracted article: Reduction of carbon dioxide to oxalate by a binuclear copper complex. Nat. Commun. 5, 5883 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Khamespanah, F. et al. Oxalate production via oxidation of ascorbate rather than reduction of carbon dioxide. Nat. Commun. 12, 1997 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pokharel, U. R., Fronczek, F. R. & Maverick, A. W. Retraction note: reduction of carbon dioxide to oxalate by a binuclear copper complex. Nat. Commun. 12, 1996 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Connelly, N. G. & Geiger, W. E. Chemical redox agents for organometallic chemistry. Chem. Rev. 96, 877–910 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Zhu, X.-Q., Mu, Y.-Y. & Li, X.-T. What are the differences between ascorbic acid and NADH as hydride and electron sources in vivo on thermodynamics, kinetics, and mechanism? J. Phys. Chem. B 115, 14794–14811 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Weerasooriya, R. B. et al. Kinetics of hydride transfer from catalytic metal-free hydride donors to CO2. J. Phys. Chem. Lett. 12, 2306–2311 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Macartney, D. H. & Sutin, N. The oxidation of ascorbic acid by tris(2,2'-bipyridine) complexes of osmium(III), ruthenium(III) and nickel(III) in aqueous media: Applications of the Marcus cross-relation. Inorg. Chim. Acta 74, 221–228 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R.M. is thankful for financial support from ENEOS TonenGeneral Research/Development Encouragement & Scholarship Foundation, Takahashi Industrial and Economic Research Foundation, the Takano Science Foundation, Kanamori Foundation, and Fukuoka Naohiko Memorial Foundation. This work was partially supported by JSPS KAKENHI Grant-in-Aid for Transformative Research Areas, “Dynamic Exciton” (JP20H05832 to Y.K.) and grant numbers JP20K21174, JP20KK0120 and JP22K19008 to Y.K. We thank T. Amimoto from the Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University for mass analysis measurements. We also thank T. Tachikawa and Z. Zhang at Kobe University for their assistance on GC analysis and T. Harada at Kobe University for determining the mechanism elucidation hint.

Author information

Authors and Affiliations

Authors

Contributions

R.M. conceived and directed the project. R.M., W.X. and Y.K. wrote the paper. W.X., J.X. and U.M.I. performed most experiments under the supervision of R.M. and M.H. J.K., M.F. and Y.K. conducted transient absorption spectroscopy and fluorescence lifetime measurements. M.Y. conducted the computational calculation for the transition states. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Masahiro Yamanaka, Yasuhiro Kobori or Ryosuke Matsubara.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Koji Tanaka and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 13C-labelling experiment.

a, A solution of 1 (1.5 mM), BI+(I) (2.5 mM), H2A (50 mM), and NaOH (110 mM) was irradiated (λmax = 400 nm) for 20 h under 1 atm of 13CO2 atmosphere. According to 1H NMR analysis, 13C-formate was obtained in a yield of 45 mM, along with a small amount of 12C-formate. This confirmed that the carbon source of the product formate is gaseous CO2. b, 1H NMR spectrum of the reaction mixture. The formation of 13C-formate was characterized by a set of doublet peaks (9.06 and 8.58 ppm). The singlet peak at 6.57 ppm is 1,3,5-trimethoxybenzene (internal standard). c, Proton-decoupled 13C (13C{1H}) NMR spectrum of the reaction mixture. An intense peak attributed to 13C-formate was observed at 169.4 ppm.

Extended Data Table 1 Photocatalytic CO2 reduction reaction using lower loading of PS and catalyst

Supplementary information

Supplementary Information

Supplementary Figs. 1–47, Sections 1–32 and Tables 1–15.

Source data

Source Data Fig. 4a

Numerical source data for spectroscopy and calculation.

Source Data Fig. 4b

Numerical source data for spectroscopy.

Source Data Fig. 4c

Numerical source data for spectroscopy.

Source Data Fig. 4d

Numerical source data for spectroscopy.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, W., Xu, J., Md Idros, U. et al. Metal-free reduction of CO2 to formate using a photochemical organohydride-catalyst recycling strategy. Nat. Chem. 15, 794–802 (2023). https://doi.org/10.1038/s41557-023-01157-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01157-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing