Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Stepwise on-demand functionalization of multihydrosilanes enabled by a hydrogen-atom-transfer photocatalyst based on eosin Y


Organosilanes are of vital importance for modern human society, having found widespread applications in functional materials, organic synthesis, drug discovery and life sciences. However, their preparation remains far from trivial, and on-demand synthesis of heteroleptic substituted silicon reagents is a formidable challenge. The generation of silyl radicals from hydrosilanes via direct hydrogen-atom-transfer (HAT) photocatalysis represents the most atom-, step-, redox- and catalyst-economic pathway for the activation of hydrosilanes. Here, in view of the green characteristics of neutral eosin Y (such as its abundance, low cost, metal-free nature, absorption of visible light and excellent selectivity), we show that using it as a direct HAT photocatalyst enables the stepwise custom functionalization of multihydrosilanes, giving access to fully substituted silicon compounds. By exploiting this strategy, we realize preferable hydrogen abstraction of Si–H bonds in the presence of active C–H bonds, diverse functionalization of hydrosilanes (for example, alkylation, vinylation, allylation, arylation, deuteration, oxidation and halogenation), and remarkably selective monofunctionalization of di- and trihydrosilanes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neutral eosin Y-catalysed functionalization of hydrosilanes.
Fig. 2: Synthetic applications of functional silanes generated from eosin Y-promoted HAT photocatalysis.

Data availability

The authors declare that all data supporting the findings of this study are available within the Article and its Supplementary Information. Computational raw data are available at


  1. Lehmann, J. W., Blair, D. J. & Burke, M. D. Towards the generalized iterative synthesis of small molecules. Nat. Rev. Chem. 2, 0115 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  2. Woerly, E. M., Roy, J. & Burke, M. D. Synthesis of most polyene natural product motifs using just 12 building blocks and one coupling reaction. Nat. Chem. 6, 484–491 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Burns, M. et al. Assembly-line synthesis of organic molecules with tailored shapes. Nature 513, 183–188 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Rossi, R., Bellina, F. & Lessi, M. Selective palladium-catalyzed Suzuki-Miyaura reactions of polyhalogenated heteroarenes. Adv. Synth. Catal. 354, 1181–1255 (2012).

    Article  CAS  Google Scholar 

  5. Lee, J. C. H., McDonald, R. & Hall, D. G. Enantioselective preparation and chemoselective cross-coupling of 1,1-diboron compounds. Nat. Chem. 3, 894–899 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Liao, K., Negretti, S., Musaev, D. G., Bacsa, J. & Davies, H. M. L. Site-selective and stereoselective functionalization of unactivated C–H bonds. Nature 533, 230–234 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Xia, J., Zhu, C. & Chen, C. Visible light-promoted metal-free C–H activation: diarylkeone-catalyzed selective benzylic mono- and difluorination. J. Am. Chem. Soc. 135, 17494–17500 (2013).

  8. Rösch, L., John, P. & Reitmeier, R. Silicon compounds, organic. Ullmanns Encyclopedia of Industrial Chemistry 637–669 (Wiley, 2000).

  9. Franz, A. K. & Wilson, S. O. Organosilicon molecules with medicinal applications. J. Med. Chem. 56, 388–405 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Denmark, S. E. & Regens, C. S. Palladium-catalyzed cross-coupling reactions of organosilanols and their salts: practical alternatives to boron- and tin-based methods. Acc. Chem. Res. 41, 1486–1499 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Kubota, K. & Ito, H. in Organosilicon Chemistry: Novel Approaches and Reactions (eds Hiyama, T. & Oestreich, M.) 1–31 (Wiley, 2019).

  12. Yuan, W., Smirnov, P. & Oestreich, M. Custom hydrosilane synthesis based on monosilane. Chem 4, 1443–1450 (2018).

    Article  CAS  Google Scholar 

  13. Simonneau, A. & Oestreich, M. Formal SiH4 chemistry using stable and easy-to-handle surrogates. Nat. Chem. 7, 816–822 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Chatgilialoglu, C. Structural and chemical properties of silyl radicals. Chem. Rev. 95, 1229–1251 (1995).

    Article  CAS  Google Scholar 

  15. Oestreich, M., Hermeke, J. & Mohr, J. A unified survey of Si–H and H–H bond activation catalysed by electron-deficient boranes. Chem. Soc. Rev. 44, 2202–2220 (2015).

  16. Zhang, X., Fang, J., Cai, C. & Lu, G. Recent advances in synthesis of organosilicons via radical strategies. Chin. Chem. Lett. 32, 1280–1292 (2021).

    Article  CAS  Google Scholar 

  17. Zhou, R. et al. Visible-light-mediated metal-free hydrosilylation of alkenes through selective hydrogen atom transfer for Si–H activation. Angew. Chem. Int. Ed. 56, 16621–16625 (2017).

  18. Hou, J. et al. Visible-light-mediate metal-free difunctionalization of alkenes with CO2 and silanes or C(sp3)–H alkanes. Angew. Chem. Int. Ed. 57, 17220–17224 (2018).

  19. Zhou, R. et al. Visible-light-mediated deuteration of silanes with deuterium oxide. Chem. Sci. 10, 7340–7344 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Zhang, Z. & Hu, X. Arylsilylation of electron-deficient alkenes via cooperative photoredox and nickel catalysis. ACS Catal. 10, 777–782 (2020).

    Article  Google Scholar 

  21. Ghosh, S., Lai, D. & Hajra, A. Visible-light-induced silylation: an update. Org. Biomol. Chem. 19, 2399–2415 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Qrareya, H., Dondi, D., Ravelli, D. & Fagnoni, M. Decatungstate-photocatalyzed Si–H/C–H activation in silyl hydrides: hydrosilylation of electron-poor alkenes. ChemCatChem 7, 3350–3357 (2015).

  23. Fan, X. et al. Eosin Y as a direct hydrogen atom transfer photocatalysts for the functionalization of C–H bonds. Angew. Chem. Int. Ed. 57, 8514–8518 (2018).

  24. Fan, X. et al. Neutral-eosin-Y-photocatalyzed silane chlorination using dichloromethane. Angew. Chem. Int. Ed. 58, 12580–12584 (2019).

    Article  CAS  Google Scholar 

  25. Kuang, Y. et al. Asymmetric synthesis of 1,4-dicarbonyl compounds from aldehydes via the marriage of hydrogen atom transfer photocatalysis with chiral Lewis acid catalysis. Angew. Chem. Int. Ed. 58, 16859–16863 (2019).

    Article  CAS  Google Scholar 

  26. Yan, J. et al. Divergent functionalization of aldehydes photocatalyzed by neutral eosin Y with sulfone reagents. Nat. Commun. 12, 7214 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Cambié, D., Bottecchia, C., Straathof, N. J. W., Hessel, W. & Noël, T. Applications of continuous-flow photochemistry in organic synthesis, material science and water treatment. Chem. Rev. 116, 10276–10341 (2016).

    Article  PubMed  Google Scholar 

  28. Obligacion, J. V. & Chirik, P. J. Earth-abundant transition metal catalysts for alkene hydrosilylation and hydroboration. Nat. Rev. 2, 15–34 (2018).

    CAS  Google Scholar 

  29. Speier, J. L., Webster, J. A. & Barnes, G. H. The addition of silicon hydrides to olefinic double bonds. Part II. The use of group VIII metal catalysts. J. Am. Chem. Soc. 79, 974–979 (1957).

    Article  CAS  Google Scholar 

  30. Asgari, P. et al. Catalytic hydrogen atom transfer from hydrosilanes to vinylarenes for hydrosilylation and polymerization. Nat. Catal. 2, 164–173 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Sieburth, S. M., Manly, C. J. & Gammon, D. W. Organosilane insecticides. Part I: biological and physical effects of isosteric replacement of silicon for carbon in etofenprox and MTI-800. Pestic. Sci. 28, 289–307 (1990).

    Article  CAS  Google Scholar 

  32. Zhu, J., Cui, W.-C., Wang, S.-Z. & Yao, Z.-J. Radical hydrosilylation of alkynes catalyzed by eosin Y and thiol under visible light irradiation. Org. Lett. 20, 3174–3178 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Zhu, J., Cui, W.-C., Wang, S.-Z. & Yao, Z.-J. Visible light-driven radical trans-hydrosilylation of electron-neutral and -rich alkenes with tertiary and secondary hydrosilanes. J. Org. Chem. 83, 14600–14609 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Cheng, C. & Hartwig, J. F. Catalytic silylation of unactivated C–H bonds. Chem. Rev. 115, 8946–8975 (2015).

  35. Dong, J. et al. Manganese-catalysed divergent silylation of alkenes. Nat. Chem. 13, 182–190 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Ma, Y., Wang, B., Zhang, L. & Hou, Z. Boron-catalyzed aromatic C–H bond silylation with hydrosilanes. J. Am. Chem. Soc. 138, 3663–3666 (2016).

  37. Toutov, A. A. et al. Silylation of C-H bonds in aromatic heterocycles by an earth-abundant metal catalyst. Nature 518, 80–84 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. McNally, A., Prier, C. K. & MacMillan, D. W. C. Discovery of an α-amino C–H arylation reaction using the strategy of accelerated serendipity. Science 334, 1114–1117 (2011).

  39. Minami, K., Ohmatsu, K. & Ooi, T. Hydrogen-atom-transfer-mediated acceptorless dehydrogenative cross-coupling enabled by multiple catalytic functions of zwitterionic triazolium amidate. ACS Catal. 12, 1971–1976 (2022).

    Article  CAS  Google Scholar 

  40. Chandrasekhar, V., Boomishankar, R. & Nagendran, S. Recent developments in the synthesis and structure of organosilanols. Chem. Rev. 104, 5847–5910 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, K. et al. Selective manganese-catalyzed oxidation of hydrosilanes to silanols under neutral reaction conditions. Angew. Chem. Int. Ed. 58, 6380–6384 (2019).

    Article  CAS  Google Scholar 

  42. Liang, H., Wang, L.-J., Ji, Y.-X., Wang, H. & Zhang, B. Selective electrochemical hydrolysis of hydrosilanes to silanols via anodically generated silyl cations. Angew. Chem. Int. Ed. 60, 1839–1844 (2021).

    Article  CAS  Google Scholar 

  43. Murakami, K., Hirano, K., Yorimitsu, H. & Oshima, K. Silver-catalyzed transmetalation between chlorosilanes and aryl and alkenyl Grignard reagents for the synthesis of tetraorganosilanes. Angew. Chem. Int. Ed. 47, 5833–5835 (2008).

    Article  CAS  Google Scholar 

  44. Agarwal, P. & Bertozzi, C. R. Site-specific antibody-drug conjugates: the nexus of biorthogonal chemistry, protein engineering and drug development. Bioconjug. Chem. 26, 176–192 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Tamao, K., Yamaguchi, S. & Shiro, M. Oligosiloles: first synthesis based on a novel endo-endo mode intramolecular reductive cyclization of diethynylsilanes. J. Am. Chem. Soc. 116, 11715–11722 (1994).

    Article  CAS  Google Scholar 

  46. Muzafarov, A. M. (ed.) Silicon Polymers (Springer, 2011).

  47. Brook, M. A. New control over silicone synthesis using SiH chemistry: the Piers–Rubinsztajn reaction. Chem. Eur. J. 24, 8458–8469 (2018).

  48. Lee, H.-J., Kwak, C., Kim, D.-P. & Kim, H. Continuous-flow Si–H functionalizations of hydrosilanes via sequential organolithium reactions catalyzed by potassium tert-butoxide. Green Chem. 23, 1193–1199 (2021).

Download references


We acknowledge financial support provided by the Ministry of Education (MOE) of Singapore (MOET2EP10120-0014, J.W.; MOET2EP10120-0007, X.L.), the National University of Singapore (R-143-000-B60-114, J.W.) and the National Natural Science Foundation of China (21688102, G.C.). We thank D. Ravelli (University of Pavia) for insightful discussions.

Author information

Authors and Affiliations



X.F. and M.Z. contributed equally to the work; their names are listed alphabetically by family name. J.W. conceived the project and directed the research. X.F. and M.Z. designed and performed the experiments. Y.G. and G.C. performed the DFT calculations. Y.L. performed the GC-MS analysis for H2 source investigation. X.F., M.Z., Q.Z., Y.Z., J. Yu, H.L., W.X., Y.C.T., J. Yan and S.C. conducted experiments to demonstrate the substrate scope. J.W., X.F., M.Z., Z.L., Y.G. and G.C. wrote the paper. All authors commented on the final paper and contributed to the analysis and interpretation of the results.

Corresponding author

Correspondence to Jie Wu.

Ethics declarations

Competing interests

J.W., F.X. and M.Z. are inventors on an International Patent Application (PCT/SG2022/050462) submitted by the National University of Singapore that covers the synthesis of functional silanes from multihydrosilanes by neutral eosin Y HAT photocatalysis. The other authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Junha Jeon, Paul Rablen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–64, Tables 1–31, synthetic procedural details, mechanistic studies, proposed mechanisms, high-resolution mass spectrometry, IR data, NMR data and spectra.

Supplementary Data

Cartesian coordinates of computational structures.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, X., Zhang, M., Gao, Y. et al. Stepwise on-demand functionalization of multihydrosilanes enabled by a hydrogen-atom-transfer photocatalyst based on eosin Y. Nat. Chem. 15, 666–676 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing